
КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ ИНСТИТУТ ИНФОРМАЦИОННЫХ

ТЕХНОЛОГИИ КАФЕДРА «ИНФОРМАТИКА И
ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

ОТЧЕТ
по производственной практике

студент: Керимбеков Нурбек.

группы: ИВТ-1-22

Руководитель практики доцент: Исраилова Н.А.

БИШКЕК – 2025

1

Отчёт о прохождении производственной практики в
ОАО «Optima Bank»

Сроки практики: 20 января 2025 г. – 28 февраля 2025 г.
Место практики: Департамент развития мобильного банкинга

Введение

Производственная практика проходила в ОАО «Optima Bank», в
Департаменте развития мобильного банкинга. Целью практики
являлось получение практических навыков в области Android-
разработки, закрепление теоретических знаний и участие в реальном
проекте.

Цели и задачи практики

Основные задачи практики:
• Изучить язык программирования Kotlin;
• Освоить современные инструменты Android-разработки,

включая Android Studio и Jetpack Compose;
• Разработать тестовое приложение (калькулятор) для

закрепления базовых навыков;
• Принять участие в создании мобильного приложения

Travel;
• Освоить систему контроля версий GitHub;
• Научиться работать с архитектурными паттернами

(ViewModel, Repository, Singleton).

Ход практики

1-я неделя (20.01.25 – 26.01.25):
• Оформление на практику, прохождение инструктажа и

техники безопасности.

2-я неделя (27.01.25 – 02.02.25):

2

• Ознакомление с правилами конфиденциальности
информации.

• Получение первых заданий от ментора.
• Составление плана по изучению языка Kotlin и

фреймворка Jetpack Compose.

3-я неделя (03.02.25 – 09.02.25):
• Изучение принципов ООП на Kotlin, а также основных

принципов SOLID.
• Разработка учебного проекта «Калькулятор» с

использованием XML-верстки.
• Ознакомление с Android SDK и базовыми компонентами

Android-приложений.

4-я неделя (10.02.25 – 16.02.25):
• Начало работы над проектом Travel.
• Разработка интерфейсов приложения с помощью Jetpack

Compose.
• Создание и доработка экранов, настройка элементов

пользовательского интерфейса.

5-я неделя (17.02.25 – 23.02.25):
• Реализация части backend-логики приложения Travel.
• Настройка взаимодействия экранов, интеграция базовых

функций.

6-я неделя (24.02.25 – 28.02.25):
• Оптимизация кода, изучение ViewModel и паттерна

Repository.
• Реализация принципа Singleton.
• Финальная проверка и улучшение проекта Travel.
• Подведение итогов практики.

Освоенные технологии и инструменты

За время практики были изучены и применены следующие
технологии и инструменты:

• Язык программирования Kotlin
• Освоены основы синтаксиса, работа с классами,

объектами, функциями, коллекциями.

3

• Изучены лямбда-выражения, расширяющие функции,
data-классы, sealed-классы и корутины для асинхронных операций.

• Особое внимание было уделено принципам SOLID, что
позволило писать более структурированный и поддерживаемый код.

Android Studio
• Настройка проектов, работа с Gradle, отладка и

профилирование приложений.
• Использование эмулятора и подключение реального

устройства для тестирования.

Jetpack Compose
• Освоена декларативная разработка интерфейсов.
• Использованы элементы Column, Row, Box, Card,

LazyColumn.
• Реализована работа с состоянием через State и remember.
• Настроена простая навигация между экранами.

Android SDK
• Изучены компоненты: Activity, Fragment, Intent,

жизненный цикл приложений.
• Настроена работа с ресурсами (строки, цвета, стили) и

обработка системных разрешений.

Система контроля версий GitHub
• Работа с Git: создание репозитория, коммиты, пуши,

ветвление и слияние.
• Освоены основы командной разработки.

Архитектурные решения
• MVVM (Model-View-ViewModel) – разделение логики и

интерфейса.
• Repository – для организации доступа к данным.
• Singleton – для управления глобальными объектами.

4

Дополнительно изучено:
• Работа с Kotlin Coroutines для асинхронных задач.
• Использование LiveData и StateFlow для реактивного

обновления интерфейса.
• Оптимизация кода и базовое тестирование приложения.
• Настройка локализации и работа с ресурсами.

Выполненные проекты

1. Учебное приложение «Калькулятор»
Описание:

• Приложение разработано на Kotlin с использованием
Jetpack Compose.

• Основная цель – закрепление знаний Kotlin, работы с
Compose и базовых принципов Android-разработки.

• Реализованы все базовые арифметические операции:
сложение, вычитание, умножение, деление, использование скобок и
десятичных чисел.

• Приложение содержит удобный интерфейс с кнопками и
отображением текущего выражения и результата.

• Первая практическая работа на Kotlin.
• Использована XML-разметка для интерфейса.
• Реализованы базовые арифметические операции.

Разбор кода

1. MainActivity.kt
Листинг кода:
class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
CalculatorScreen()

}
}

}

• Класс наследуется от ComponentActivity.
• В onCreate вызывается setContent { CalculatorScreen() },

что позволяет использовать Jetpack Compose для построения
интерфейса.

5

2. CalculatorScreen() – основной экран
Листинг кода:
@Composable
fun CalculatorScreen() {
var expression by remember { mutableStateOf("0") }
var result by remember { mutableStateOf("0") }

3. Интерфейс кнопок
Листинг кода:
val buttons = listOf(
listOf("AC", "C", "(", ")"),
listOf("7", "8", "9", "/"),
listOf("4", "5", "6", "*"),
listOf("1", "2", "3", "-"),
listOf("0", ".", "=", "+")

)

• Кнопки расположены в виде списка списков, чтобы
формировать строки кнопок на экране.

• Кнопки включают арифметические действия, скобки,
очистку и “=”.

4. Обработка нажатий handleButtonClick()
Листинг кода:
fun handleButtonClick(button: String, current: String): String {
var data = current
when (button) {
"AC" -> return "0"
"C" -> data = if (data.length > 1) data.dropLast(1) else "0"
"=" -> return data

}

• "AC" – полная очистка.
• "C" – удаляет последний символ.
• "=" обрабатывается отдельно через evaluateExpression.

Особенности:
• Автоматическое добавление * перед открывающей

скобкой после цифры.
• Предотвращение повторных операторов.
• Контроль правильности десятичной точки и скобок.
• Замена начального нуля при вводе цифры.

6

5. Вычисление выражения evaluateExpression()
Листинг кода:
fun evaluateExpression(expression: String): String {
val rhino = Context.enter()
rhino.optimizationLevel = -1
return try {
val scope: Scriptable = rhino.initStandardObjects()
val result = rhino.evaluateString(scope, expression, "JavaScript", 1,

null).toString()
DecimalFormat("#.###").format(result.toDouble())

} catch (e: Exception) {
"Error"

} finally {
Context.exit()

}
}

• Используется движок Rhino (JavaScript engine) для
вычисления математических выражений.

• Результат форматируется до трёх знаков после запятой.
• Обработка ошибок: при некорректном выражении

возвращается "Error".

Скрины проекта:

7

2. Туристическое приложение «Travel»
• Основной итоговый проект практики.
• Интерфейс разработан с использованием Jetpack

Compose.
• Реализованы основные экраны: приветственный экран,

список мест, карточки достопримечательностей.
• Использованы архитектурные паттерны (MVVM,

Repository).
• Настроена работа с GitHub, проект загружен в

репозиторий.

Структура проекта:
• components – вспомогательные элементы интерфейса
• BtnBooked.kt – кнопка для бронирования
• FilterTabs.kt – табы для фильтрации
• InfoDt.kt – блок информации о деталях места
• PlaceCard.kt – карточка для отображения места в списке
• PlaceCardDt.kt – карточка подробной информации
• SearchBar.kt – строка поиска
• TimTempRat.kt – компонент для отображения времени,

температуры и рейтинга
• models
• Place.kt – модель данных для описания туристического

места
• navigations
• BottomNavigationBar.kt – нижняя панель навигации
• BottomNavItem.kt – элементы нижней навигации
• NavGraph.kt – граф навигации между экранами
• screens
• Detail.kt – экран с подробной информацией
• Favorite.kt – экран «Избранное»
• MainScreen.kt – главный экран
• Profile.kt – экран профиля
• Recent.kt – экран последних просмотров
• SplashScreen.kt – приветственный экран
• ui.theme – оформление, стили приложения
• MainActivity.kt – главный файл запуска приложения

Разбор кода главного экрана MainScreen.kt

Главный экран отображает приветствие пользователю, строку
поиска, фильтры и список доступных туристических мест.

8

Листинг кода:
@Composable
fun MainScreen(navController: NavController) {
Scaffold(bottomBar = { BottomNavigationBar(navController) })

{ innerPadding ->
Column(
modifier = Modifier
.fillMaxSize()
.background(Color.White)
.padding(innerPadding)
.padding(Dimens.PaddingLarge)

) {
Row(
modifier = Modifier.fillMaxWidth(),
verticalAlignment = Alignment.CenterVertically,
horizontalArrangement = Arrangement.SpaceBetween

) {
Text(
text = "Привет, Нурбек �",
fontSize = 28.sp,
fontWeight = FontWeight.Bold,
color = Color.Black

)
Image(
painter = painterResource(R.drawable.img_1),
contentDescription = "Profile Photo",
modifier = Modifier
.size(Dimens.IconSize)
.clip(CircleShape)

)
}
Text(text = "Исследуйте мир", fontSize = 22.sp, color =

Color.Gray)
SearchBar()
FilterTabs()
PlacesListScreen(navController)

}
}

}

Разбор логики:
• Scaffold используется для создания базовой структуры

экрана с нижней панелью навигации.

9

• Column располагает элементы вертикально, с отступами
и фоном.

• Row в верхней части экрана показывает приветствие и
аватар пользователя.

• SearchBar() и FilterTabs() – компоненты для поиска и
фильтрации мест.

• PlacesListScreen(navController) – горизонтальный список
карточек мест с навигацией на экран деталей.

Экран деталей Detail.kt
Листинг кода:
@Composable
fun Detail(place: Place, navController: NavController) {
Column(
modifier = Modifier
.fillMaxSize()
.background(Color.White)
.padding(bottom = Dimens.PaddingMedium)

) {
PlaceCardDt(place, navController)
Spacer(modifier = Modifier.height(Dimens.SpacerHeight))
TimTempRat(place)
Spacer(modifier = Modifier.height(Dimens.SpacerHeight))
InfoDt(place)
Spacer(modifier = Modifier.weight(1f))
BtnBooked()

}
}

Разбор:
• Используется Column, чтобы расположить компоненты

вертикально.
• PlaceCardDt отображает основное изображение и

ключевую информацию о месте.
• TimTempRat показывает время, температуру и рейтинг.
• InfoDt – блок с детальной информацией.
• BtnBooked – кнопка для бронирования тура.
• Spacer с weight(1f) позволяет кнопке находиться внизу

экрана.

Метод getPlaceById(id: Int) возвращает объект Place по
идентификатору, что облегчает навигацию между списком мест и
экраном деталей.

10

Карточки мест PlaceCard.kt и PlaceCardDt.kt
PlaceCard.kt – для отображения места в списке:
@Composable
fun PlaceCard(place: Place, navController: NavController) {
var isFavorite by remember { mutableStateOf(false) }

Card(
modifier = Modifier
.width(Dimens.CardWidth)
.height(Dimens.CardHeight)
.padding(Dimens.PaddingSmall)
.clickable { navController.navigate("detail/${place.id}") },

shape = RoundedCornerShape(Dimens.PaddingMedium),
) {
// Содержимое карточки: изображение, название, локация,

кнопка избранного
}

}

PlaceCardDt.kt – для экрана деталей:
@Composable
fun PlaceCardDt(place: Place, navController: NavController) {
// Показывает фоновое изображение места
// Кнопка назад с navController.popBackStack()
// Кнопка сохранить/скачать место
// Затемнённая панель с названием, локацией и ценой

}

Разбор:
• PlaceCard и PlaceCardDt используют Card для

оформления.
• Навигация на экран деталей происходит через

navController.navigate.
• Состояние избранного или скачанного элемента

хранится через remember и mutableStateOf.
• Затемнённый фон и текст реализованы с использованием

Box и Column внутри карточки.

Скрины проекта:

11

Вывод

Производственная практика в ОАО «Optima Bank» позволила
закрепить полученные теоретические знания и приобрести
практические навыки в области Android-разработки. В процессе
практики были изучены и применены современные технологии
разработки мобильных приложений: язык Kotlin, фреймворк Jetpack
Compose, архитектурные паттерны MVVM, Repository и Singleton.

Было реализовано два проекта:
• учебное приложение «Калькулятор», направленное на

закрепление базовых знаний Kotlin и работы с интерфейсами;
• проект «Travel», представляющий собой многоэкранное

туристическое приложение с навигацией, поиском и системой
избранного.

12

Практика способствовала развитию профессиональных навыков:
• умению работать с системой контроля версий GitHub;
• проектированию интерфейсов и архитектуры

приложений;
• написанию структурированного и оптимизированного

кода;
• командной работе и соблюдению корпоративных

стандартов разработки.

Итогом прохождения практики стало формирование полноценного
опыта участия в реальном проекте и значительное расширение
профессиональных компетенций в сфере мобильной разработки.\

Отчёт о прохождении производственной практики в
ОАО «Айыл Банк»

Сроки практики: 26 мая 2025 г. – 28 июня 2025 г.
Место практики: ОАО «Айыл Банк», IT-департамент

Введение

Производственная практика проходила в ОАО «Айыл Банк».
Основная цель – углубление знаний в области баз данных и
алгоритмов, освоение работы в среде Oracle и закрепление навыков
программирования на языке SQL и Java. Практика позволила
применить теоретические знания в решении прикладных задач,
связанных с управлением данными и алгоритмическими процессами.

Цели и задачи практики

Основные задачи практики:
• Ознакомление с деятельностью банка и правилами

информационной безопасности.
• Изучение основ работы с Oracle Database.
• Разработка и выполнение SQL-запросов.
• Создание и тестирование таблиц, связей, триггеров,

процедур и функций.

13

• Решение алгоритмических задач на языке Java.
• Приобретение навыков отладки и обработки ошибок в

СУБД.

Ход практики

1-я неделя (26.05.25 – 01.06.25):
• Ознакомительный день.
• Оформление документов на практику.
• Инструктаж по технике безопасности.

2-я неделя (02.06.25 – 08.06.25):
• Ознакомление с СУБД Oracle.
• Изучение основ SQL-запросов.
• Создание таблиц, настройка связей и ограничений.
• Работа с триггерами и последовательностями.

3-я неделя (09.06.25 – 15.06.25):
• Получение заданий по алгоритмам.
• Изучение материалов по оптимизации запросов.
• Решение первых алгоритмических задач на Java.

4-я неделя (16.06.25 – 22.06.25):
• Решение второго блока алгоритмических задач.
• Работа над структурой кода, тестирование решений.

5-я неделя (23.06.25 – 28.06.25):
• Проверка выполненных заданий.
• Исправление ошибок.
• Итоговая защита и завершение практики.

Освоенные технологии и инструменты
• Oracle Database: создание таблиц, настройка связей,

триггеры, последовательности.
• SQL: SELECT, JOIN, агрегатные функции, создание

процедур и функций.
• PL/SQL: обработка ошибок, написание процедур и

функций с параметрами.

14

• Java: решение алгоритмических задач, работа со
строками, массивами и структурами данных.

• DBMS_OUTPUT: вывод информации при тестировании
PL/SQL-блоков.

Выполненные задания

1. Работа с базами данных в Oracle

Постановка задачи

В рамках практики необходимо было разработать и протестировать
базу данных с использованием Oracle. Задачи включали:

• Создание таблиц:
• employees (сотрудники) с полями:
• employee_id (идентификатор сотрудника, уникальный

номер),
• first_name (имя),
• last_name (фамилия),
• hire_date (дата найма),
• salary (зарплата),
• department_id (идентификатор отдела, внешний ключ).
• departments (отделы) с полями:
• department_id (идентификатор отдела),
• department_name (название отдела),
• location (местоположение).
• Триггеры:
• Реализовать триггер, автоматически генерирующий ID

сотрудника или департамента при вставке в таблицу.
• Заполнение таблиц:
• Добавить несколько тестовых строк для сотрудников и

отделов.
• Процедуры:
1. Процедура для увеличения зарплаты сотрудника на

заданный процент.
• Параметры:
• p_employee_id – идентификатор сотрудника,
• p_percentage – процент увеличения зарплаты.
2. Процедура для вывода информации о сотруднике по его

ID (имя, фамилия, дата найма, зарплата).
• Функции:

15

• Функция для вычисления средней зарплаты по отделу.
• Параметр: department_id.
• Возврат: средняя зарплата.
• Курсоры:
• Пакет (или анонимный блок), который выводит список

сотрудников в заданном отделе, используя неявный курсор.
• Обработка ошибок:
• Добавить обработку ошибок в процедуры и функции

(например, если сотрудник с таким ID отсутствует).
• Тестирование:
• Проверить работу всех функций и процедур на тестовых

данных.

Решение

Были реализованы SQL-скрипты:
• создание таблиц с ключами и связями,
• настройка последовательностей и триггеров,
• написание процедур, функций и курсоров,
• тестирование всех модулей.

Листинг кода:
-- Включаем вывод сообщений из DBMS_OUTPUT
SET SERVEROUTPUT ON;

-- Создание таблиц

CREATE TABLE departments (
department_id NUMBER PRIMARY KEY,
department_name VARCHAR2(100),
location VARCHAR2(100)

);

CREATE TABLE employees (
employee_id NUMBER PRIMARY KEY,
first_name VARCHAR2(50),
last_name VARCHAR2(50),
hire_date DATE,
salary NUMBER(10,2),
department_id NUMBER,

16

FOREIGN KEY (department_id) REFERENCES
departments(department_id)
);

-- Создание последовательностей для генерации ID

CREATE SEQUENCE seq_employee_id START WITH 1
INCREMENT BY 1 NOCACHE NOCYCLE;
CREATE SEQUENCE seq_department_id START WITH 1
INCREMENT BY 1 NOCACHE NOCYCLE;

-- Триггеры для автоматической генерации ID

CREATE OR REPLACE TRIGGER trg_employee_id
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
IF :NEW.employee_id IS NULL THEN
:NEW.employee_id := seq_employee_id.NEXTVAL;

END IF;
END;
/

CREATE OR REPLACE TRIGGER trg_department_id
BEFORE INSERT ON departments
FOR EACH ROW
BEGIN
IF :NEW.department_id IS NULL THEN
:NEW.department_id := seq_department_id.NEXTVAL;

END IF;
END;
/

-- Заполнение таблиц начальными данными

INSERT INTO departments (department_name, location) VALUES ('IT',
'bishkek');

17

INSERT INTO departments (department_name, location) VALUES ('HR',
'bishkek');

INSERT INTO employees (first_name, last_name, hire_date, salary,
department_id)
VALUES ('akylbek', 'nurlanov', SYSDATE, 50000, 1);
INSERT INTO employees (first_name, last_name, hire_date, salary,
department_id)
VALUES ('azamat', 'aitaliev', SYSDATE, 60000, 1);
INSERT INTO employees (first_name, last_name, hire_date, salary,
department_id)
VALUES ('jyldyz', 'kanybekova', SYSDATE, 55000, 2);

COMMIT;

-- Процедура повышения зарплаты

CREATE OR REPLACE PROCEDURE raise_salary(
p_employee_id IN NUMBER,
p_percentage IN NUMBER

) IS
BEGIN
UPDATE employees
SET salary = salary + (salary * p_percentage / 100)
WHERE employee_id = p_employee_id;

IF SQL%ROWCOUNT = 0 THEN
RAISE_APPLICATION_ERROR(-20001, 'Сотрудник с таким ID

не найден.');
END IF;

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Ошибка в raise_salary: ' ||

SQLERRM);
END;
/

-- Процедура получения информации о сотруднике

18

CREATE OR REPLACE PROCEDURE get_employee_info(
p_employee_id IN NUMBER

) IS
v_first_name employees.first_name%TYPE;
v_last_name employees.last_name%TYPE;
v_hire_date employees.hire_date%TYPE;
v_salary employees.salary%TYPE;

BEGIN
SELECT first_name, last_name, hire_date, salary
INTO v_first_name, v_last_name, v_hire_date, v_salary
FROM employees
WHERE employee_id = p_employee_id;

DBMS_OUTPUT.PUT_LINE('Имя: ' || v_first_name);
DBMS_OUTPUT.PUT_LINE('Фамилия: ' || v_last_name);
DBMS_OUTPUT.PUT_LINE('Дата найма: ' ||

TO_CHAR(v_hire_date, 'DD.MM.YYYY'));
DBMS_OUTPUT.PUT_LINE('Зарплата: ' || TO_CHAR(v_salary,

'999999.99'));

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE('Сотрудник с ID ' || p_employee_id ||

' не найден.');
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Ошибка в get_employee_info: ' ||

SQLERRM);
END;
/

-- Функция вычисления средней зарплаты по отделу

CREATE OR REPLACE FUNCTION avg_salary_by_dept (
p_department_id IN NUMBER

) RETURN NUMBER IS
v_avg_salary NUMBER;

BEGIN
SELECT AVG(salary)
INTO v_avg_salary
FROM employees
WHERE department_id = p_department_id;

19

IF v_avg_salary IS NULL THEN
RETURN 0; -- если нет сотрудников — возвращаем 0

ELSE
RETURN v_avg_salary;

END IF;

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Ошибка в avg_salary_by_dept: ' ||

SQLERRM);
RETURN -1;

END;
/

-- Анонимный блок с неявным курсором для вывода сотрудников
отдела

DECLARE
v_department_id NUMBER := 1; -- Здесь укаживаем ID отдела,

список сотрудников которого хочем увидеть
BEGIN
DBMS_OUTPUT.PUT_LINE('Сотрудники отдела с ID ' ||

v_department_id || ':');

FOR rec IN (
SELECT first_name || ' ' || last_name AS full_name
FROM employees
WHERE department_id = v_department_id

)
LOOP
DBMS_OUTPUT.PUT_LINE('- ' || rec.full_name);

END LOOP;
END;
/

-- функция повышение зарплаты
BEGIN

20

DBMS_OUTPUT.PUT_LINE('=== Повышаем зарплату сотруднику
с ID=1 на 10% ===');
raise_salary(1, 10);

END;
/
--получаем информацию о сотруднике

BEGIN
DBMS_OUTPUT.PUT_LINE('=== Получаем информацию о

сотруднике с ID=1 ===');
get_employee_info(1);

END;
/
-- средняя зарплата

DECLARE
v_avg_sal NUMBER;

BEGIN
v_avg_sal := avg_salary_by_dept(1);
DBMS_OUTPUT.PUT_LINE('Средняя зарплата в отделе 1: ' ||

TO_CHAR(v_avg_sal, '999999.99'));
END;
/

-- средняя зарплата по ID отдела
SELECT avg_salary_by_dept(1) FROM dual;

-- SELECT * FROM departments;
-- SELECT * FROM employees;

21

Скрины:

22

23

Краткое описание кода и результатов

В работе были реализованы:
1.Создание таблиц
• departments — содержит данные об отделах (ID,

название, локация).
• employees — содержит данные о сотрудниках (ID, имя,

фамилия, дата найма, зарплата, отдел).
Между ними установлена связь по department_id.

2.Последовательности и триггеры
• seq_employee_id и seq_department_id автоматически

генерируют новые ID.
• trg_employee_id и trg_department_id — триггеры,

которые подставляют ID при вставке записей.
3.Наполнение данными

Добавлены отделы: IT и HR, а также три сотрудника:
• Akylbek Nurlanov (IT, зарплата 50 000)
• Azamat Aitaliev (IT, зарплата 60 000)
• Jyldyz Kanybekova (HR, зарплата 55 000)

24

4.Процедуры
• raise_salary — увеличивает зарплату сотрудника на

заданный процент.
• get_employee_info — выводит информацию о

сотруднике (имя, фамилия, дата найма, зарплата).
5.Функция
• avg_salary_by_dept — вычисляет среднюю зарплату

сотрудников в отделе.
6.Анонимные блоки
• Вывод списка сотрудников отдела по ID.
• Тест вызова процедур и функции.

Результаты выполнения
• После вызова raise_salary(1, 10) зарплата Akylbek

Nurlanov увеличилась с 50 000 → 55 000.
• Процедура get_employee_info(1) вывела информацию о

сотруднике:

Имя: akylbek
Фамилия: nurlanov
Дата найма: <текущая дата>
Зарплата: 55000.00

• Функция avg_salary_by_dept(1) вернула среднюю
зарплату в отделе IT:

(55 000 + 60 000) / 2 = 57 500

• Анонимный блок вывел список сотрудников отдела IT:

- akylbek nurlanov
- azamat aitaliev

2. Первая задача по алгоритму

Тема: Числа без одинаковых цифр
Антон записал ряд натуральных чисел в порядке возрастания: 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 и т.д.
Затем вычеркнул из него все числа, в которых имеется хотя бы две

25

одинаковых цифры, и получил последовательность: 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23 и т.д.

Вам необходимо по заданному N найти N-ое по счету число в
получившейся последовательности.

Входные данные

В единственной строке входного файла INPUT.TXT записано
натуральное число N (1 ≤ N ≤ 10000).

Выходные данные

В единственную строку выходного файла OUTPUT.TXT нужно
вывести N-ое по счету число без одинаковых цифр.

Условие задачи:

Необходимо найти N-ое число в последовательности натуральных
чисел, в которых нет одинаковых цифр. Например,
последовательность начинается так: 1, 2, 3, …, 10, 12, 13, 14, …

Листинг кода:

import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;

public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int N = scanner.nextInt();

26

int count = 0;
int number = 1;

while (true) {
if (hasAllUniqueDigits(number)) {
count++;
if (count == N) {
System.out.println(number);
break;

}
}
number++;

}
}

// Проверяем, есть ли одинаковые цифры
public static boolean hasAllUniqueDigits(int num) {
Set<Character> digits = new HashSet<>();
char[] chars = String.valueOf(num).toCharArray();
for (char c : chars) {
if (digits.contains(c)) {
return false;

}
digits.add(c);

}
return true;

}
}

Описание решения:
• Метод hasUniqueDigits(int num) проверяет, что цифры

числа не повторяются.
• Используется массив boolean[10] для учёта уже

встреченных цифр.
• В цикле перебираются числа, пока не найдено N-ое

число без повторяющихся цифр.

Вывод:
• Алгоритм корректно находит N-ое число.
• Пример: при N = 100 результат — 123.

27

Скрин работы программы:

3. Вторая задача по алгоритму

Тема: Игра со спичками
Двое играют в следующую игру. Из кучки спичек за один ход игрок
вытягивает либо 1, либо 2, либо 1000 спичек. Выигрывает тот, кто
забирает последнюю спичку. Кто выигрывает при правильной игре?

Входные данные

В единственной строке входного файла INPUT.TXT записано одно
натуральное число — N (1 ≤ N ≤ 10000) начальное количество
спичек в кучке.

Выходные данные

В единственную строку выходного файла OUTPUT.TXT нужно
вывести 1, если выигрывает первый игрок (тот, кто ходит первым),
или 2, если выигрывает второй игрок.

28

Условие задачи:

Двое играют с кучкой спичек. За ход можно взять 1, 2 или 1000
спичек. Побеждает тот, кто забирает последнюю спичку.
Необходимо определить победителя при правильной игре обоих
игроков.

Листинг кода:

import java.util.Scanner;

public class MatchstickGame {

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int N = sc.nextInt();

// Игрок 1 выигрывает, если количество спичек % 3 != 0 и N !=
1000

if (N == 1000) {

System.out.println(2); // проигрыш для первого

} else if (N % 3 == 0) {

System.out.println(2); // второй игрок выигрывает

} else {

System.out.println(1); // первый игрок выигрывает

}

}

}

Описание решения:

29

• Определяется стратегия “выигрышного остатка”.

• Если количество спичек кратно 3 (и не равно 1000),
первый игрок проигрывает.

• Если N не кратно 3, первый игрок может сделать ход так,
чтобы оставить второму кратное 3, обеспечивая победу.

• Особый случай — N = 1000, первый игрок не может
выиграть, если второй играет правильно.

Вывод:

• Программа определяет победителя за O(1) операций.

• Примеры:

• N = 2 → выигрывает первый игрок → вывод 1

• N = 3 → выигрывает второй игрок → вывод 2

Скрин работы программы:

30

Вывод

Производственная практика в ОАО «Айыл Банк» позволила
закрепить теоретические знания и приобрести практические навыки
в области работы с базами данных, алгоритмами и языком
программирования Java. В процессе практики были изучены и
применены современные технологии и инструменты работы с
данными: Oracle Database, SQL и PL/SQL, а также алгоритмическое
решение задач на Java.

Было выполнено несколько ключевых заданий:
• разработка базы данных сотрудников и отделов с

использованием таблиц, связей, триггеров, последовательностей,
процедур и функций;

• реализация алгоритмических задач на языке Java,
включая работу с числами без повторяющихся цифр и решение
логических задач;

• тестирование и отладка всех модулей базы данных и
алгоритмов.

Практика способствовала развитию профессиональных
навыков:

• умению создавать и управлять базами данных в Oracle;
• проектированию и оптимизации SQL-запросов,

процедур и функций;
• написанию структурированного, читаемого и

корректного кода на Java;
• навыкам обработки ошибок и отладки сложных систем;
• работе с алгоритмами и логическим мышлением при

решении практических задач.

Итогом прохождения практики стало формирование опыта работы с
корпоративными информационными системами банка, закрепление
знаний по базам данных и алгоритмам, а также значительное
расширение профессиональных компетенций в сфере IT.

31

Итоговое заключение

Производственная практика в ОАО «Optima Bank» и ОАО «Айыл
Банк» позволила комплексно закрепить теоретические знания,
полученные в университете, и приобрести практический опыт
работы в разных направлениях информационных технологий.

В ходе практики в «Optima Bank» были освоены современные
подходы к разработке мобильных приложений на платформе
Android: язык Kotlin, фреймворк Jetpack Compose, архитектурные
паттерны MVVM, Repository и Singleton. Реализация проектов
«Калькулятор» и «Travel» способствовала развитию навыков
проектирования интерфейсов, работы с системой контроля версий
GitHub и командной разработки.

Практика в «Айыл Банк» позволила углубить знания в области
работы с базами данных, алгоритмами и программированием на Java.
Разработка базы данных сотрудников и отделов с использованием
таблиц, связей, триггеров, процедур и функций, а также решение
алгоритмических задач способствовали формированию умений
работы с Oracle Database, SQL, PL/SQL и логическим мышлением
при решении практических задач.

В результате обеих практик были достигнуты следующие
результаты:

• приобретен опыт работы в реальных корпоративных
проектах;

• закреплены навыки программирования, проектирования
и оптимизации кода;

• освоены современные технологии и инструменты
разработки мобильных приложений и баз данных;

• развиты аналитические и алгоритмические способности,
а также навыки командной работы.

Итогом прохождения практики стало значительное расширение
профессиональных компетенций в сфере IT и мобильной разработки,
а также готовность к эффективной работе в профессиональной среде.

