МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И.РАЗЗАКОВА

ИНСТИТУТ ГОРНОГО ДЕЛА И ГОРНЫХ ТЕХНОЛОГИЙ им. У.А.АСАНАЛИЕВА

Кафедра: «Металлургия и металлургические процессы»

Методическое указание

Методическое указание к выполнению лабораторных занятий по курсу Коррозия и защита металлов для студентов по направлению 650 200 «Металлургия»

Бишкек 2016

Контрольные вопросы

Укажите достоинства лакокрасочных покрытий для борьбы с коррозией?

Что такое лакокрасочное покрытия?

Какие Вы знаете нанесения лакокрасочных покрытий?

Что такое водостойкость?

Что такое влагостойкость?

Лабораторная работа № 5

ЖАРОСТОЙКОСТЬ МЕТАЛЛОВ И СПЛАВОВ НА ВОЗДУХЕ

Цель работы: Освоить весовой метод определения жаростойкости металлов и сплавов.

Необходимое оборудование и реагенты: Образцы латуни Л68, меда, стали 45, хромистой стали 18ХГТ, нихрома X20Н80, муфельная печь, аналитические весы.

Краткие теоретические сведения

Жаростойкостью или окалиностойкостью называют способность металла сопротивляться газовой коррозии.

В ряде случаев жаростойкость металлов может быть обусловлена их термодинамической устойчивостью, если R данной газовой среде при данной температуре и давлении агрессивного компонента изобарно-изотермический потенциал возрастает или не изменяется; т.е.

$$\Delta G_{\rm T} \ge 0$$
, $\Delta G_{\rm T} = \Delta G_{\rm T}^0 + RT \cdot 2{,}303 \, {\rm Ig} \frac{1}{{\rm p0}_2^{{\rm min}/4}}$;

где $\Delta G_{\rm r}^0$ — изменение стандартного изобарно - изотермического потенциала;

(ΔG_{T} при р $O_{2} = 0,1$ МПа), Дж/моль;

R = 8,314 Дж/(К-моль) — газовая постоянная;

Т - термодинамическая (абсолютная) температура, К:

 pO_2 — парциальное давление кислорода, соответствующее исходному состоянию системы, МПа;

m — число атомов металла в молекуле окисла;

п — валентность металла.

Жаростойкость металлов и сплавов очень сильно зависит от свойств, образующихся пленок продуктов коррозии. При образовании незащитных, пористых окисных пленок (при кинетическом контроле процесса) жаростойкость определяется природой металла, а при

образовании защитных, сплошных окисных пленок (при диффузионном контроле) - защитными свойствами образующейся окисной пленки.

Жаростойкость металлов и сплавов можно сильно повысить легированием - введением в их состав компонентов, улучшающих защитные свойства образующейся окисной пленки в результате уменьшения числа дефектов в решетке окисла, или образованием на поверхности сплава более защитного окисла легирующего компонента (ZnO на латуни, BeO на бериллиевой бронзе, Al₂O₃ на алюминиевой стали И бронзе и др.), или образованием высокозащитных двойных (смещанных) окислов легирующего компонента с основным металлом типа шпинели (FeCr2O4. NiFe₂O₄, NiCr₂O₄, FeAI₂O₄ и др.).

Жаростойкость металлов и сплавов определяют по изменению массы стандартных образцов после их выдержки в печи при температуре испытания.

Включают муфельную печь для ее нагрева до заданной температуры (600°С), которая определяется и поддерживается с помощью терморегулятора.

Испытываемые цилиндрические образцы зачищают наждачной бумагой, измеряют штангенциркулем их размеры с точностью ± 0.1 мм, обезжиривают органическим растворителем, протирают фильтровальной бумагой и взвешивают на аналитических весах с точностью ~ 0.0002 г.

Образцы помещают в открытых тиглях в нагретую до заданной температуры печь и, закрыв ее, выдерживают в ней в течение заданного времени (например, 1 ч) при данной температуре.

После этого тигли с образцами извлекают щипцами из нечи, ставят их на лист асбеста и быстро закрывают крышками (во избежание потери окалины, которая часто отскакивает от образцов при их остывании). По охлаждении каждый образец взвешивают вместе с тиглем, а затем - взвешивают отдельно пустой тигель.

Результаты опытов записывают в таблицу 5.

	1 donuga 5				
Результатов опытов	Номер образца				
	1	2	3	4	5
Размеры образца, м					
Поверхность образца S, м ²					
Начальная масса образца то, г					
Время коррозии ф, ч					
Масса образца с окалиной и тиглем, г					
Масса тигля, г			11000		
Масса образца с окалиной m_2 , г					
Привес m_2 - m_0 , г					
Показатель K_{m}^{\dagger} , (м ² ·ч)			110		

Условия опыта:

материал образца...

температура $t = ... \pm ... °C$

Если известен химический состав образующейся окалины, то возможен пересчет положительного показателя изменения массы на глубинный показатель по следующим формулам:

$$K_{m}^{-} = K_{m}^{+} \cdot \frac{\alpha}{\delta * n}, r/(M^{2} \cdot q);$$

$$\Pi = \frac{K_{m}^{-}}{\rho Me} \cdot 8,76, MM/год;$$

где $K_{\rm m}^-$ – отрицательный показатель изменения массы, г/(${\rm M}^2$ ·ч)

А - атомная масса металла, г;

п - валентность металла:

оМе -плотность металла, г/см³.

Пользуясь справочными данными, рассчитывают отношение объема окисла металла к объему израсходованного образование металла по формуле:

$$rac{V_{
m OK}}{V_{
m Me}} = rac{{
m M}\cdot
ho_{
m Me}}{m\cdot
ho_{
m oK}\cdotlpha}$$
 где $V_{
m OK}$ —объем окисла, см 3 ;

 V_{Me} — объем израсходованного на образование окисла металла, CM:

М — молекулярная масса окисла, г:

А - атомная масса металла, г;

 $\rho_{\rm Me}$ — плотность металла, г/см³;

 $\rho_{\text{ок}}$ — плотность окисла, г/см³:

m — число атомов металла в молекуле окисла.

Оценку жаростойкости металлов и сплавов по результатам испытаний производят по десятибалльной шкале коррозионной стойкости металлов (приложение A).

Задание. Изучить жаростойкость металлов.

Порядок выполнения работы

Для выполнения данной работы студентам предоставляются образцы латуни Л68, меди, стали 45, хромистой стали 18ХГТ, нихрома X20H80.

- 1) Ознакомиться с методикой определения жаростойкости металлов и сплавов.
- 2) На основании экспериментальных данных определить глубинный показатель коррозии исследуемых образцов.
- 3) Определить группу коррозионной стойкости исследуемых металлов и сплавов.
- 4) Определить, удовлетворяет ли окисел данного металла условию сплошности.

Содержание отчета

Дать результаты лабораторной работы в виде таблицы. По полученным данным построить диаграмму.

Контрольные вопросы

Что означают понятия жаростойкости и жаропрочности? Какие теории жаростойкого легирования вам известны? Каковы основные показатели коррозии? Приведите примеры жаростойких сплавов. Каковы методы защиты металлов от газовой коррозии?

Лабораторная работа № 6

ТЕРМОДИФФУЗИОННЫЕ ПОКРЫТИЯ

Цель работы: получение на стали жаростойкого диффузионного покрытия и исследование влияния длительности процесса получения этого покрытия на его толщину.

Необходимое оборудование и реагенты: Набор стальных образцов из углеродистой или низколегированной стали, цилиндрические реакторы, реакционная смесь, состоящая из 49% порошка алюминия или 60-75 % порошка его ферросплава, 49-20 % порошка AI₂O₃ и 2-5 % NH₄CI, активированный уголь.