МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. И. РАЗЗАКОВА

Кафедра «ТОЭ и ОЭ»

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО И СИНУСОИДАЛЬНОГО ТОКА

МЕТОДИЧЕСКОЕ ПОСОБИЕ к решению контрольной работы по ТЭЦ

Бишкек 2015 г.

«Рассмотрено» и одобрено на заседании кафедры «ТОЭ и ОЭ» пр. № 7 от 30 марта 2015 г.

«Рекомендовано» к изданию методической комиссией энергетического факультета пр.№ от 2015 г.

Составители: к.т.н., доцент Э.Б. Исакеева, к.т.н., доцент Сатаркулов К.А., ст. препод. С.М.Асанова.

УДК 621.311

Основы теории электрических цепей: Методические указания к выполнению контрольной работы по курсу «ТЭЦ» для студентов КГТУ им. И. Раззакова, Бишкек, 2010-39 с.

Излагается методика выполнения контрольных работ, даны задания и схемы по вариантам, краткие теоретические сведения по физическим процессам, наблюдаемым в электрических цепях.

Предназначены для студентов дистанционной формы обучения.

Рецензент к.т.н., доцент Суеркулов М.А.

ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО И СИНУСОИДАЛЬНОГО ТОКА

Введение

Методические указания предназначены для выполнения контрольных заданий по ТЭЦ студентами технических специальностей.

Предлагаемые контрольные задания охватывают весь основной материал курса «ТЭЦ» по разделам линейные электрические цепи постоянного и синусоидального тока и соответствуют государственному стандарту по ТОЭ. Контрольные задания имеют 100 вариантов. Варианти определяется двумя последними цифрами шифра зачетной книжки. Варианты одного и того же задания отличаются друг от друга числовыми значениями параметров, схемами и характером искомой величины.

При изучении курса и выполнении контрольных заданий рекомендуются учебники и учебные пособия, выпущенные в последние годы, так как в старых изданиях изложение ряда новых вопросов может отсутствовать. Рекомендуется пользоваться одним учебником при изучении всего курса и только тогда, когда тот или иной вопрос изложен в нем недостаточно ясно или вовсе не нашел отражения, использовать другой учебник. Целесообразность такого подхода обусловлена и тем, что в учебниках имеется небольшая разница в обозначениях и это может вызвать некоторые затруднения при переходе от одного учебника к другому. При изучении курса ТЭЦ студентам необходимо составлять конспект, в который полезно выписывать основные законы, определения и формулы.

Этот конспект окажет большую помощь при выполнении контрольных заданий и подготовке к экзаменам. В качестве достаточно полного перечня вопросов для самопроверки могут служить названия параграфов в учебнике Л.А.Бессонова «Теоретические основы электротехники». Там же приведены задачи с решениями по всему курсу ТОЭ. Для лучшего усвоения курса рекомендуется просмотреть решения этих задач, а также имеющиеся там вопросы для самопроверки.

Для более углубленного изучения теории цепей и теории поля рекомендуются учебные пособия, приведенные в списке дополнительной литературы, а также «Сборник задач по ТОЭ» (под ред. Л.А.Бессонова) 1980, в котором имеется около 40% задач с решениями.

Методические указания к выполнению контрольного задания

При изучении курса ТЭЦ студенты приобретают необходимые знания об основных методах расчета и физических процессах, происходящих в электрических цепях и электромагнитных полях.

К представленным на рецензию контрольным заданиям предъявляются следующие требования:

- а) Основные положения решения должны быть достаточно подробно пояснены;
- б) Рисунки, графики, схемы, в том числе и заданные условием задачи должны быть выполнены аккуратно и в удобочитаемом масштабе с указанием обозначений;
- в) Задания выполняются на листах формата А4 с обязательной нумерацией страниц;
- г) Вычисления должны быть сделаны с точностью до третьего знака после запятой. Погрешность вычислений не должна превышать 5%;
- д) Задания должны быть датированы и подписаны студентом;

Выполненные контрольные задания будут зачтены, если решения не содержат ошибок принципиального характера и если выполнены перечисленные требования.

Работа над контрольными заданиями помогает студентам проверить степень усвоения им курса, вырабатывает у них навык четко и кратко излагать свои мысли. Для успешного достижения этой цели необходимо руководствоваться следующими правилами:

- 1) Начиная решение задачи, указать, какие физические законы или расчетные методы предполагается использовать при решении, привести математическую запись этих законов и методов.
- 2) Тщательно продумать, какие буквенные символы предполагается использовать в решении. Пояснить значение каждого буквенного символа словами или же соответствующим обозначением на схеме.
- 3) В ходе решения задачи не следует изменять принятые направления токов и наименование узлов, сопротивлений и т.д. Не следует изменять обозначения, заданные условием. При решении одной и той же задачи различными методами одну и ту же величину надлежит обозначать одним и тем же буквенным символом.
- 4) Расчет каждой исходной величины следует выполнить сначала в общем виде, а затем в полученную формулу подставить числовые значения и привести окончательный результат с указанием единицы измерения. При решении системы уравнений целесообразно воспользоваться компьютером, в частности пакетами MathCad или Matlab предназначенные для выполнения математических вычислений любой сложности и пакетом Electronics Workbench, предназначенный для сборки компьютерных моделей, представляющих собой виртуальные электрические схемы.
- 5) Промежуточный и конечный результаты расчетов должны быть ясно выделены из общего текста.

- 6) Решение задач следует подтверждать приведением всех алгебраических преобразований и арифметических расчетов.
- 7) Для элементов электрических схем следует пользоваться обозначениями, применяемыми в учебниках по ТЭЦ.
- 8) Каждому этапу решения задачи нужно давать пояснения.
- 9) При построении кривых следует выбирать такой масштаб, чтобы на 1 см оси координат приходилось $1 \cdot 10^{\pm n}$ или $2 \cdot 10^{\pm n}$ единиц измерения физической величины, где n-целое число. Градуировку осей выполнять, начиная с нуля, равномерно через один или через два параметра. Числовые значения координат точек, по которым строятся кривые, не приводить. Весь график в целом и отдельные кривые на нем должны иметь названия.

Для самостоятельного изучения курса ТЭЦ рекомендуется следующая литература:

Учебники:

- 1) Бессонов Л.А. Теоретические основы электротехники. Электрические цепи: Учеб для электротех., энерг., приборостроит. спец. вузов 9-е изд., перераб. И доп. М.:Высш.шк., 1996. 638 с.: ил.
- 2) Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники. Ч. 1, 2.-М.:Энергия, 1981.
- 3) Зевеке Г.В., Ионкин П.А., Нетушил А.В, Страхов С.В. Основы теории цепей.- М.: Энергоатомиздат, 1989.
- 4) Поливанов К.М. Теоретические основы электротехники. -М., 1972, т.І, 1969, т.ІІІ.
- 5) Атабеков А.Н. и др. Теоретические основы электротехники. М.,1978, т. І, 1979, т. ІІ.

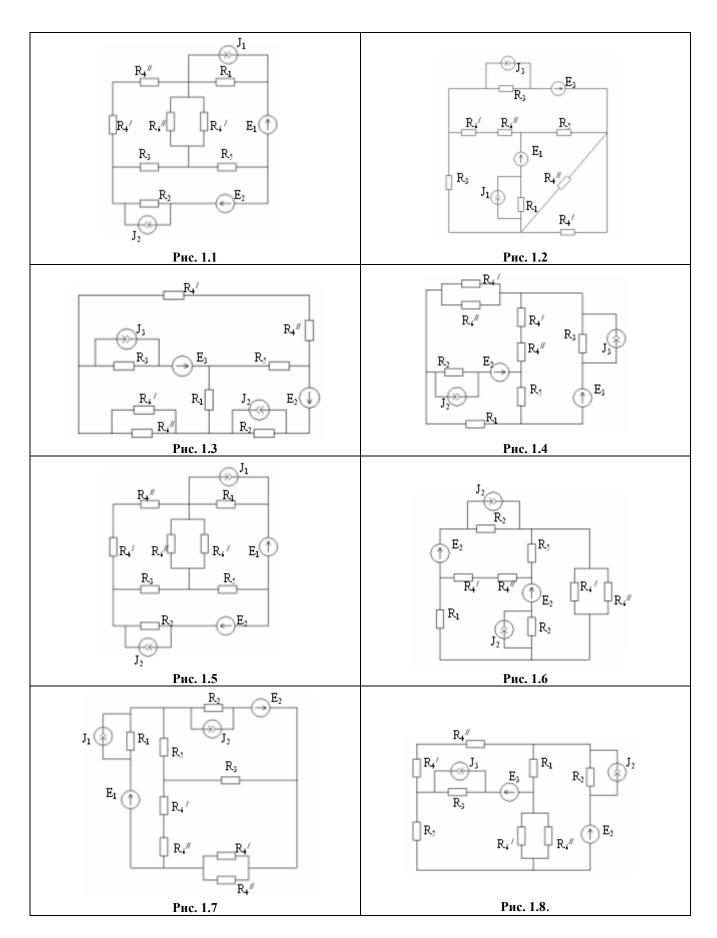
Задачники:

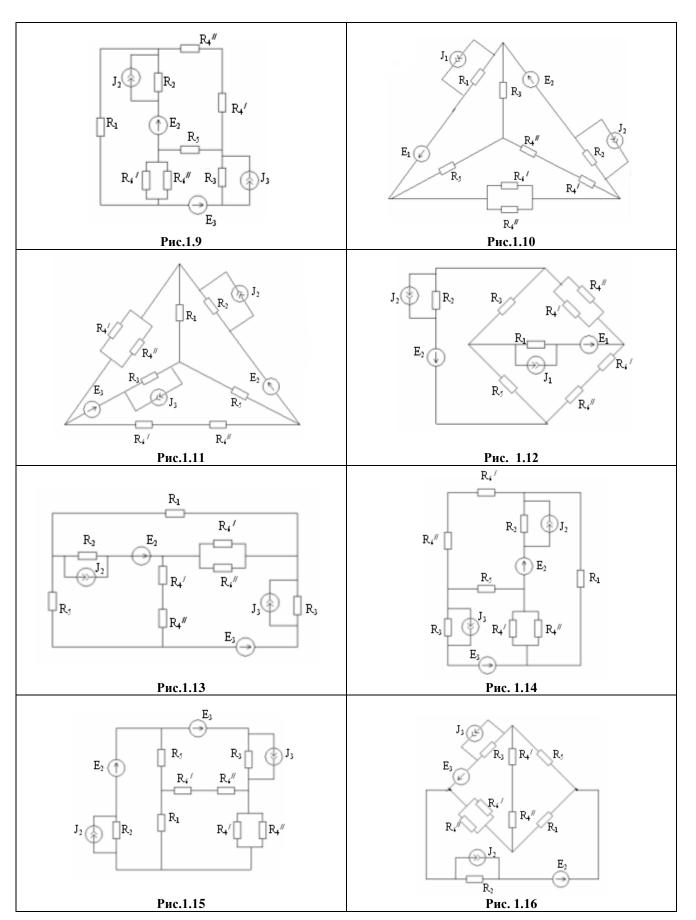
- 1) Бессонов Л.А., Демидова И.Г., Заруди М.Е. и др. Сборник задач по теоретическим основам электротехники. М.: Высш.шк.; 2000.
- 2) Шебес М.Р. Теория линейных электрических цепей в упражнениях и задачах. М., 1973.

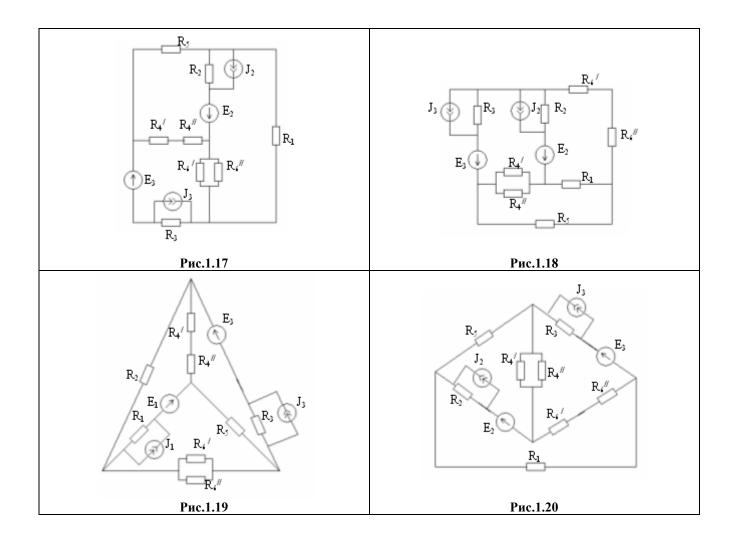
Дополнительная литература:

- 1) Пискунова Ж.Г., Бравичев С.Н. Расчёт линейных электрических цепей с установившимися синусоидальными токами. Методические указания и консультации к самостоятельному изучению курса ТОЭ. Оренбург: ОГУ, 1996.
- 2) Ушаков А.Н., Ушакова Н.Ю. Секреты MathCad для инженерных и научных расчётов. Оренбург: ОГУ, 2001.
- 3) Быковский В.В., Ушакова Н.Ю., Быковская Л.В. Расчёт электрических цепей в системе MathCad. Методические указания. Оренбург: ОГТУ, 1995.

- г) Литература для выполнения расчётно-графического задания № 1:
- 1) Бессонов Л.А. (9-е издание), §`2.1-2.14, §2.20-2.26.
- 2) Зевеке Г.В. и др. (5-е издание) § 1.1-1.9, §1.12, §2.1-2.3, §2.5, §2.8.
- 3) Нейман Л.Р., Демирчян. К.С. Т.1, § 3.8-3.10, 5.5-5.15.
- 4) Поливанов К.М. Т.1, § 1.1-1.7, 2.1-2.11.
- д) Литература для выполнения расчётно-графического задания № 2:
- 1) Бессонов Л.А. (9-е издание), §'3.1-3.23, §3.25-3.28.
- 2) Зевеке Г.В. и др. (5-е издание) § 3.1-3.19, §3.21-3.22.
- 3) Нейман Л.Р., Демирчян. К.С. Т.1, § 3.1-3.3, 3.19, 4.1-4.10, 5.1-5.17...
- 4) Поливанов К.М. Т.1, § 3.1-3.6, 5.1-5.5.

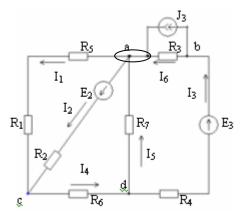

Задание 1. Линейные цепи постоянного тока


<u>Задача:</u> Для электрической схемы, соответствующей номеру варианта и изображенной на рисунках 1.1-1.20, выполнить следующее:


- 1.1 Составить на основании законов Кирхгофа систему уравнений для расчета токов во всех ветвях схемы.
 - 1.2 Определить токи во всех ветвях схемы методом контурных токов.
 - 1.3 Определить токи во всех ветвях схемы методом узловых потенциалов.
- 1.4 Результаты расчета токов, проведенного двумя методами, свести в таблицу и сравнить между собой.
- 1.5 Составить баланс мощностей в исходной схеме (схеме с источником тока), вычислив суммарную мощность источников и суммарную мощность нагрузок (сопротивлений).
- 1.6 Определить ток I_I в заданной по условию схеме с источником тока, используя метод эквивалентного генератора.
- 1.7 Начертить потенциальную диаграмму для любого замкнутого контура, включающего обе Э.Д.С. Величины сопротивлений, Э.Д.С. и токов источников тока для каждого варианта даны в таблице 1.1.
 - 1.8 Примечания:
- 1.8.1 Ответвления к источник тока, ток которого по условию равен нулю, не схемах контрольных работ не показывать.
- 1.8.2 Обозначая на схеме токи в ветвях, необходимо учесть, что ток через сопротивление, параллельное источнику тока, отличается от тока источника тока и тока через источник Э.Д.С.
- 1.8.3 Перед выполнением пп. 1.2 и 1.3 рекомендуется преобразовать источник тока в источник Э.Д.С. и вести расчет для полученной схемы.
- 1.8.4 В п.1.6 при определении входного сопротивления двухполюсника следует преобразовать схему соединения треугольником в эквивалентную схему соединения звездой.
- 1.8.5 Рекомендуется подумать о том, как можно выполнить п.п.1.2 и 1.3 без преобразования источника тока в источник Э.Д.С. В конце контрольной работы пояснить методику расчета в этом случае.

						P -	11011	DI CA	UIVIDI						Tuoni
Вариант	рисунок	R_1	R_2	R_3	R4	R4"	R_5	R ₆ ′	R ₆ "	E_{I}	E_2	E_3	J_{kI}	J_{k2}	J_{k3}
3ap	nc														
F	,		,	T		М	,	T			В	,		A	
1	1.15	19,5	7,5	13,5	21	21	15	4	2	-	9	45	-	0,8	0
2	1.1	19,5	7,5	3	1	11	16,5	30	90	-	12	30	-	0,8	0
3	1.16	6	12	9	10	5	19,5	16	240	-	21	22,5	-	2	0
4	1.11	30	120	150	210	70	225	12	48	-	90	375	-	0,5	0
5	1.17	15	27	7,5	14	1	12	13,5	27	-	16,5	52,5	-	0,5	0
6	1.3	6	19,5	13,5	10	5	7,5	36	12	-	16,2	15	-	0,4	0
7	1.7	195	60	90	150	600	165	40	27,5	10,2	37,5	-	0,04	0	-
8	1.20	9	7,5	12	22,5	315	10,5	0	12	-	15	33	-	2	0
9	1.8	82,5	120	150	20	40	105	504	280	-	25,5	22,5	-	0,1	0
10	1.10	165	90	67,5	25	200	120	100	300	21	21	-	0,1	0	_
11	1.9	10,5	18	6	10	3,5	22,5	15	60	-	12	15	_	1	0
12	1.18	45	60	33	60	20	21	50	25	-	16,5	22,5	-	0,3	0
13	1.12	22,5	18	15	135	15	12	5,5	5	15	30	-	0,2	0	-
14	1.12	18	52,5	33	6	3	15	90	30	-	9	18	-	0,4	0
15	1.13	6	10,5	15	11	7	30	16,5	16,5	_	9	30	-	2	0
16	1.13	6	16,5	7,5	6	12	10,5	36	18	25,5	15	-	2	0	-
17	1.14	13,5	30	24	90	180	45	12	21	-	15	27	_	1	0
18	1.6	7,5	15	18	5	5,5	12	24	360	-	15	37,5	_	0,5	0
19	1.19	7,5	10,5	15	5	1	22,5	42	105	15	-	45	1	-	0
20	1.12	12	15	9	36	60	31,5	31	8	25,5	_	30	1	_	0
21	1.15	6,5	2,5	4,5	3,5	10	5	1	1	-	4	15	-	0,4	0
22	1.13	6,5	2,5	1	4	15	5,5	10	30	_	5	10	_	0,4	0
23	1.16	2	4	3	2	3	6,5	7	17,5	_	11	7,5	_	1	0
24	1.11	10	40	50	140	20	75	145	5	_	34	125	_	0,4	0
25	1.17	5	9	2,5	3	2	4	9	4,5	_	8,2	17,5	_	0,2	0
26	1.17	2	6,5	4,5	1	4	2,5	7,5	5	_	6,7	5	-	0,2	0
27	1.7	65	20	30	60	120	55	12,5	10	4,7	12,5	-	0,02	0,2	-
28	1.20	3	2,5	4	105	7,5	3,5	2	2	-	7,5	11	-	1	0
29	1.8	27,5	40	50	12	8	35	150	100	_	6,5	7,5	-	0,15	0
30	1.10	55	30	22,5	60	15	40	50	50	8,1	7	7,5	0,08	0,13	U
31	1.10	3,5	6	2	3	1,5	7,5	12	6	-	7	5	-	0,5	0
32	1.18	15	20	11	30	6	7,3	10	15	_	7,5	7,5	-	0,3	0
33	1.12	7,5	6	5	5	45	4	1,5	2	3,5	10			0,2	-
34	1.12	6	17,5	11	2	1	5	30	10	-	6,5	6	0,4	0,2	-
35	1.13	2	3,5	5	5	1	10	100	2,75	-	6,5	10	-	1	0
36	1.13	2	5,5	2,5	14	6	3,5	12	6	10,5	5	-	1	0	-
37	1.14	4,5	10	8	100	25	15	6	5		10	9		0,5	
38	1.14	2,5	5	6	2	1,5	4	25	7,5	-	6	12,5	-	0,3	0
39	1.19	2,5	3,5	5	1	1,3	7,5	14	35	7		15	0,5		0
	1			3	12	20		9						-	
40	1.2	4	5				10,5	3	5	10,5	20	10	0,5	0	2
41	1.15	26	10	18 4	26,5 12	30	20	40	120	-	20	32	-	0	2
42	1.1	26	10			4				-			-	0	
43	1.16	8	16	12	10 120	10	26	220	22	-	60	24	-	0	0,5
44	1.11	40	160	200		168	300	40	40	-	200	200	-	0	1,5
45	1.17	20	36	10	8 17	12	16	18	36	-	40	40	-	0	
46	1.3	8	26	18		3	10	60	15	- 24	32	11	-	0	0,5
47	1.7	260	80	120	200	800	220	70	20	24	34	- 10	0	0,2	-
48	1.20	12	10	16	420	30	14	15	720	-	40	12	-	0	2
49	1.8	110	160	200	60	20	140	360	720	-	50	22	-	0,04	0


		R_1	R_2	R_3	R_4	R4''	R_5	R_6	$R_6^{/\!/}$	E_{I}	E_2	E_3	J_{k1}	J_{k2}	J_{k3}
ш	×	1			,	,	3	· ·		1	_		- 1.1	- K2	- 10
Вариант	рисунок														
Bap	ond				C	<u> </u> Рм					В			<u> </u>	
50	1.10	220	120	90	150	150	160	100	10	50	22	-	0	0,05	_
51	1.10	14	24	8	11	7	30	80	20	-	40	12	-	0,03	1
52	1.18	60	80	44	40	40	28	50	50	_	46	8	-	0	0,5
53	1.12	30	24	20	180	20	16	10	4	26	28	-	0	0,5	-
54	1.4	24	70	44	5	7	20	40	120	-	40	19,6	-	0	0,1
55	1.13	8	14	20	10	14	40	132	12	-	40	10	-	0	1,5
56	1.5	8	22	10	10	14	14	16	20	50	16,6	-	0	0,2	-
57	1.14	18	40	32	160	160	60	20	24	-	60	28	-	0	0,2
58	1.6	10	20	24	6	8	16	32	480	-	30	38	-	0	0,5
59	1.19	10	14	20	2	6	30	30	40	30	-	20	0	-	2
60	1.2 1.15	16 32,5	20 12,5	12 22,5	80 140	48	42 25	25 6	27	50	20	34 75	0	0,4	0,5
62	1.13	32,5	12,5	5	5	15	27,5	50	150	_	25	50	U	0,4	0
63	1.16	10	20	15	11	14	32,5	650	26	_	35	37,5	-	2	0
64	1.11	50	200	250	87	65	375	45	100	-	150	625	_	0,5	0
65	1.17	25	45	12,5	17	8	20	45	22,5	-	32	87,5	-	0,4	0
66	1.3	10	32,5	22,5	2	23	12,5	90	18	-	27	25	-	0,4	0
67	1.7	325	100	150	400	400	275	100	12	17	62,5	-	0,04	0	-
68	1.20	15	12,5	20	525	37,5	17,5	14	6	-	25	55	-	2	0
69	1.8	137	200	250	50	50	175	600	600	-	34,5	37,5	0	0,14	0
70	1.10	275	150	112	175	200	200	750	150	24	35	-	0,14	0	-
71	1.9	17,5	30	10	12,5	10	37,5	30	60	-	26	25	-	0,8	0
72	1.18	75	100	55	30	150	35	50	75	-	32,5	27,5	-	0,25	0
73 74	1.12 1.4	37,5 30	30 87,5	25 55	25 10	225 5	20 25	12 150	5,5 50	25	50 15	30	0,2	0,4	0
75	1.13	10	17,5	25	15	15	50	150	165	-	15	50	-	2	0
76	1.13	10	27,5	12,5	20	10	17,5	40	40	32,5	25	-	3	0	-
77	1.14	22,5	50	40	100	-	75	30	25	-	35	45	-	0,8	0
78	1.6	12,5	25	30	5,5	12	20	40	600	-	35	62,5	-	0,1	0
79	1.19	12,5	17,5	25	5	5	37,5	175	70	30	-	75	0,6	-	0
80	1.2	20	25	15	60	100	52,5	35	30	50,5	-	50	0,6	-	0
81	1.15	13	5	9	12	16,8	10	10	4	-	10	21	-	0	1
82	1.1	13	5	2	4	4	11	20	60	-	12	16	-	0	2
83	1.16	4	8	6	6	4	13	110	11	-	30	9	-	0	1
84	1.11	20	80	100	70	70	150	24	16 9	-	100	150	-	0	1
85 86	1.17 1.3	10	18 13	9	3 5	7	<u>8</u>	18 7	42	-	20 16	30 8,2	-	0	0,2
87	1.7	130	40	60	90	730	110	30	15	12	13	-	0	0,3	-
88	1.20	6	5	8	15	210	8	2	6	-	20	14	-	0,3	1
89	1.8	55	80	100	10	30	70	600	150	-	25	10	-	0	0,5
90	1.10	110	60	45	100	50	80	300	60	25	8	-	0	0,1	-
91	1.9	7	12	4	4	5	15	9	72	-	20	8	-	0	0,5
92	1.18	30	40	22	12	60	14	40	10	-	23	9,5	-	0	0,2
93	1.12	15	12	10	90	10	8	3	4	13	14	-	0	0,5	-
94	1.4	12	35	22	2	4	10	20	60	-	20	7,6	-	0	0,5
95	1.13	4	7	10	7	5	20	6	66	-	20	10	-	0	1
96 97	1.5	9	11	5	6	6	7	12 15	24 7	25	4,5 30	- 10	0	0,5	- 0.5
98	1.14 1.6	5	20 10	16 12	120	60 5	30 8	240	16	_	15	10	-	0	0,5
99	1.19	5	7	10	20	4	15	70	28	15	-	20	0	-	1
100	1.19	8	10	6	40	24	21	12	14	25	_	14	0	-	1
100	1.2		10		Lio		<u>~</u> 1	14	1.7	23	l	17	L	<u> </u>	

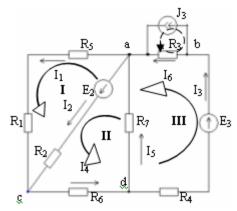


1.9 Пример выполнения расчётно-графического задания № 1

На рисунке 1.21 изображена схема электрической цепи, параметры, которой: R_1 =3 Ом, R_2 =48 Ом, R_3 =12 Ом, R_4 =12 Ом, R_5 =3 Ом, R_6 =36 Ом, R_7 =24 Ом E_2 =15 В, E_3 =33 В, I_3 =5 А.

1.9.1. Составим на основании законов Кирхгофа систему уравнений для расчёта токов во всех ветвях схемы.

Первый закон Кирхгофа: Алгебраическая сумма токов ветвей, сходящихся в любом узле электрической схемы, равна нулю. Выбираем положительные направления токов и обозначаем их на схеме стрелками. Пронумеровываем узлы схемы. **Узел** — это место пересечения трёх и более ветвей. В схеме на рисунке 1 четыре узла (a, b, c, d).


По первому закону Кирхгофа составляем (y-1)=3 уравнений, где у – количество узлов. Токи, условно «входящие» в рассматриваемый узел, в уравнении записываем со знаком (+), и наоборот, «выходящие» со знаком (-).

$$-I_1 - I_2 + J_3 + I_5 + I_6 = 0$$

$$-J_3 - I_6 + I_3 = 0$$

$$I_1 + I_2 - I_4 = 0$$

Второй закон Кирхгофа: Алгебраическая сумма падений напряжения на элементах электрической цепи в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура. Выбираем независимые контуры и направление их обхода. Большинство простых цепей можно изобразить на одной плоскости без пересечения ветвей. Такие цепи называют планарными (плоскими).

Для планарной цепи уравнения, записанные для всех контуров-ячеек, кроме внешнего контура, являются взаимно-независимыми. Выбираем $(\varepsilon-\varepsilon_J)-y+1$

контуров, где e — количество ветвей схемы, e_J — количество ветвей с источниками тока. В схеме на рисунке 1.21 всего семь ветвей, токи в ветвях с источниками тока известны и равны токам источников, поэтому для этих ветвей уравнения не составляем, следовательно, в схеме шесть (e- e_J) ветвей с неизвестными токами. Т.о, для данной схемы по второму закону Кирхгофа составляем (e- e_J)-y+1=(7-1)-4+1=3 уравнений. Источник тока не может входить в контур для составления уравнений по второму закону Кирхгофа.

$$\begin{split} I_1(R_1 + R_5) - I_2 R_2 &= -E_2 \\ I_2 R_2 + I_4 R_6 + I_5 R_7 &= E_2 \\ I_3 R_4 + I_6 R_3 - I_5 R_7 &= E_3 \end{split}$$

Система уравнений, составленная по законам Кирхгофа, для электрической схемы на рисунке 1.21:

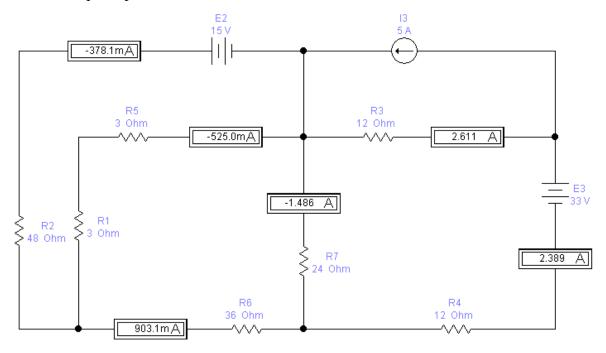
$$\begin{cases} -I_1 - I_2 + J_3 + I_5 + I_6 = 0 \\ -J_3 - I_6 + I_3 = 0 \end{cases}$$

$$I_1 + I_2 - I_4 = 0$$

$$I_1(R_1 + R_5) - I_2R_2 = -E_2$$

$$I_2R_2 + I_4R_6 + I_5R_7 = E_2$$

$$I_3R_4 + I_6R_3 - I_5R_7 = E_3$$

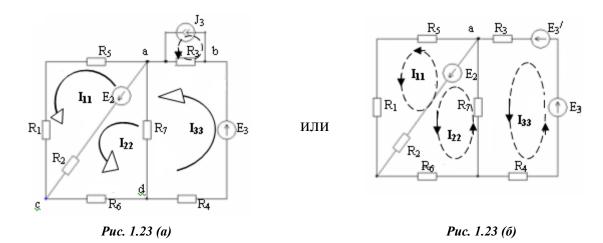

Решение стемы уравнений в пакете Mathcad и определение токов показано на рисунке 1.22.

$$R := \begin{pmatrix} -1 & -1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & -1 & 0 & 0 \\ R1 + R5 & -R2 & 0 & 0 & 0 & 0 \\ 0 & R2 & 0 & R6 & R7 & 0 \\ 0 & 0 & R4 & 0 & -R7 & R3 \end{pmatrix} \qquad R = \begin{pmatrix} -1 & -1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & -1 & 0 & 0 \\ 6 & -48 & 0 & 0 & 0 & 0 \\ 0 & 48 & 0 & 36 & 24 & 0 \\ 0 & 0 & 12 & 0 & -24 & 12 \end{pmatrix}$$

$$E := \begin{pmatrix} -J3 \\ J3 \\ 0 \\ -E2 \\ E2 \\ E3 \end{pmatrix} \qquad E = \begin{pmatrix} -5 \\ 5 \\ 0 \\ -15 \\ 15 \\ 33 \end{pmatrix} \qquad I := R^{-1} \cdot E \qquad I = \begin{pmatrix} 0.525 \\ 0.378 \\ 2.389 \\ 0.903 \\ -1.486 \\ -2.611 \end{pmatrix}$$

Рис. 1.22. Расчет токов по законам Кирхгофа

Проверим токи, найденные по законам Кирхгофа, построив эту схему в программе Electronics Workbench, подключив во все ветки электрической схемы измерительный прибор тока.


1.9.2 Определим токи во всех ветвях методом контурных токов.

Согласно методу контурных токов, предполагается, что в каждом независимом контуре течет единый контурный ток. В методе контурных токов для расчёта цепи с (600) неизвестными токами составляют систему контурных уравнений. Число уравнений соответствует (600)-

Согласно указаниям преобразуем источники тока в источники ЭДС равный $E_3^{'} = J_3 R_3$ (рис. 1.23,6). При расчете задаемся положительными направлениями токов ветвей и обозначаем их на схеме. Определяем независимые контуры и обозначаем направления их обхода.

Составляем систему уравнений по методу контурных токов

Для рис. 1.23 (б)
$$\begin{cases} I_{11}(R_5+R_1+R_2)-I_{22}R_2=-E_2\\ I_{22}(R_2+R_6+R_7)-I_{11}R_2-I_{33}R_7=E_2\\ I_{33}(R_3+R_7+R_4)-I_{22}R_7=E_3+E_3 \end{cases} \text{ ИЛИ } \begin{cases} I_{11}R_{11}-I_{22}R_{12}-I_{33}0=-E_2\\ -I_{11}R_{21}+I_{22}R_{22}-I_{33}R_{23}=E_2\\ I_{11}0-I_{22}R_{32}+I_{33}R_{33}=E_{30} \end{cases}$$

где; R_{11} , R_{22} , R_{33} — полные сопротивления первого, второго и третьего контуров, соответственно, [Ом];

 R_{12} , R_{32} , R_{21} , R_{23} - сопротивления, принадлежащие двум контурам одновременно, [Ом]. Если направления контурных токов в общей для контуров ветви совпадают, то взаимное сопротивление положительно, и наоборот, если не совпадают, то взаимное сопротивление отрицательное;

 E_{30} - алгебраическая сумма ЭДС, входящих в третий контур, соответственно, [B].

Составим систему уравнений по методу контурных токов и для первоначальной схемы (для рис. 1.23, а). Т.к., ветвь с источником тока не влияет на количество независимых контуров, а следовательно, и на количество уравнений, то для того чтобы составить уравнения МКТ учитывая эту ветвь, необходимо его (источник тока) замкнуть по контуру и учесть в уравнении через падение напряжения на резисторе.

Для рис. 1.23 (a)
$$\begin{cases} I_{11}(R_5+R_1+R_2)-I_{22}R_2=-E_2\\ I_{22}(R_2+R_6+R_7)-I_{11}R_2-I_{33}R_7=E_2\\ I_{33}(R_3+R_7+R_4)-I_{22}R_7-J_3R_3=E_3 \end{cases} \quad \text{ИЛИ} \quad \begin{cases} I_{11}R_{11}-I_{22}R_{12}-I_{33}0=-E_2\\ -I_{11}R_{21}+I_{22}R_{22}-I_{33}R_{23}=E_2\\ I_{11}0-I_{22}R_{32}+I_{33}R_{33}=E_3+J_3R_3 \end{cases}$$

Из уравнений, составленных для рис. 1.23 (а) и (б) видно, что численные значения в правой части этих систем, одинаковы.

Решим эту систему уравнений в пакете Mathcad и определим показания токов.

$$R := \begin{pmatrix} R11 & -R12 & 0 \\ -R21 & R22 & -R23 \\ 0 & -R32 & R33 \end{pmatrix} \qquad R = \begin{pmatrix} 54 & -48 & 0 \\ -48 & 108 & -24 \\ 0 & -24 & 48 \end{pmatrix} \qquad E := \begin{pmatrix} -E2 \\ E2 \\ E30 \end{pmatrix} \qquad E = \begin{pmatrix} -15 \\ 15 \\ 93 \end{pmatrix}$$

$$Ik := R^{-1} \cdot E$$

$$Il1 := 0.525$$

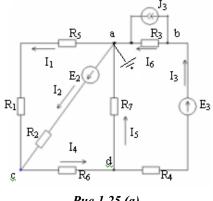
$$Ik = \begin{pmatrix} 0.525 \\ 0.903 \\ 2.389 \end{pmatrix} \qquad I22 := 0.903$$

$$I33 := 2.389$$

$$I3 := 133 \qquad I3 = 2.389$$

$$R_1 \qquad I_1 \qquad I_2 = 0.378$$

$$R_1 \qquad I_3 \qquad I_4 := I22 \qquad I4 = 0.903$$


$$I_5 := I22 - I33 \qquad I5 = -1.486$$

$$I_6 := I33 - J3 \qquad I6 = -2.611$$

Рисунок 1.24 – Расчёт токов методом контурных токов

1.9.3 Определим токи во всех ветвях методом узловых потенциалов.

В методе узловых потенциалов для расчёта цепи с неизвестными токами составляют систему узловых уравнений, то есть уравнений по первому закону Кирхгофа. Причём, токи в этих уравнениях выражены по закону Ома через потенциалы узлов, то есть неизвестными в этих уравнениях являются не токи, а потенциалы. Выражение токов через разности потенциалов и ЭДС обеспечивают выполнение первого закона Кирхгофа.

Puc 1.25 (a)

Принимаем потенциал одного из узлов равным нулю, $\varphi_a = 0$, для этого в электрической схеме на *puc. 1.25 (a)* заземляем узел *a*. Для остальных узлов составляем систему уравнений:

$$\begin{cases} \varphi_b \left(\frac{1}{R_3} + \frac{1}{R_4} \right) - \varphi_d \frac{1}{R_4} = \frac{E_3}{R_4} - J_3 \\ \varphi_d \left(\frac{1}{R_6} + \frac{1}{R_7} + \frac{1}{R_4} \right) - \varphi_b \frac{1}{R_4} - \varphi_c \frac{1}{R_6} = -\frac{E_3}{R_4} , \\ \varphi_c \left(\frac{1}{R_1 + R_5} + \frac{1}{R_2} + \frac{1}{R_6} \right) - \varphi_d \frac{1}{R_6} = \frac{E_2}{R_2} \end{cases}$$

T.K.
$$g = \frac{1}{R}$$
, TO

$$\begin{cases} \varphi_{b}(g_{3}+g_{4})-\varphi_{d}g_{4}=E_{3}g_{4}-J_{3}\\ \varphi_{d}(g_{6}+g_{7}+g_{4})-\varphi_{b}g_{4}-\varphi_{c}g_{6}=-E_{3}g_{4}\\ \varphi_{c}(g_{15}+g_{2}+g_{6})-\varphi_{d}g_{6}=E_{2}g_{2} \end{cases}$$

$$\begin{cases} \varphi_{b} g_{y11} - \varphi_{d} g_{y12} = J_{y1} \\ \varphi_{d} g_{y22} - \varphi_{b} g_{y21} - \varphi_{c} g_{y23} = J_{y2} \\ \varphi_{c} g_{y33} - \varphi_{d} g_{y32} = J_{y3} \end{cases}$$

где; g_{11} , g_{22} , g_{33} — собственные проводимости узлов, равные сумме проводимостей всех ветвей присоединенных к соответствующим узлам, [См];

 g_{12} , g_{13} , g_{21} , g_{23} — сумма проводимостей всех ветвей, соединяющих два узла, взятая с обратным знаком, [См].;

 J_{y1} , J_{y2} , J_{y3} - узловые токи, [A]. Определяются как алгебраическая сумма произведений ЭДС, присоединённых к данному узлу, на проводимости ветвей, и алгебраическая сумма токов источников токов, присоединенных к данному узлу.

Расчёт токов методом узловых потенциалов, для схемы рисунок 1.25 (a), выполним в системе Mathcad.

$$\varphi_{a} = 0$$

$$\varphi_{b} \left(\frac{1}{R_{3}} + \frac{1}{R_{4}}\right) - \varphi_{d} \frac{1}{R_{4}} = \frac{E_{3}}{R_{4}} - J_{3}$$

$$\varphi_{d} \left(\frac{1}{R_{6}} + \frac{1}{R_{7}} + \frac{1}{R_{4}}\right) - \varphi_{b} \frac{1}{R_{4}} - \varphi_{c} \frac{1}{R_{6}} = -\frac{E_{3}}{R_{4}}$$

$$\varphi_{c} \left(\frac{1}{R_{1} + R_{5}} + \frac{1}{R_{2}} + \frac{1}{R_{6}}\right) - \varphi_{d} \frac{1}{R_{6}} = \frac{E_{2}}{R_{2}}$$

$$g := \begin{pmatrix} \frac{1}{R3} + \frac{1}{R4} & \frac{-1}{R4} & 0 \\ \frac{-1}{R4} & \frac{1}{R6} + \frac{1}{R7} + \frac{1}{R4} & \frac{-1}{R6} \\ 0 & \frac{-1}{R6} & \frac{1}{R1 + R5} + \frac{1}{R2} + \frac{1}{R6} \end{pmatrix} \qquad g = \begin{pmatrix} 0.167 & -0.083 & 0 \\ -0.083 & 0.153 & -0.028 \\ 0 & -0.028 & 0.215 \end{pmatrix}$$

$$Jy := \begin{pmatrix} \frac{E3}{R4} - J3 \\ \frac{-E3}{R4} \\ \frac{E2}{R2} \end{pmatrix} \qquad Jy = \begin{pmatrix} -2.25 \\ -2.75 \\ 0.313 \end{pmatrix} \qquad \phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$\phi := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$0 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

$$1 := g^{-1} \cdot Jy \qquad \phi b := -31.331$$

Составим систему уравнений методом узловых потенциалов и для схемы рис. 1.25 (б) . Т.к., уравнения по МУП составляются для узлов, а количество узлов рисунка 1.25 (б) меньше, чем на рисунке 1.25 (а), то соответственно и уравнений будет меньше.

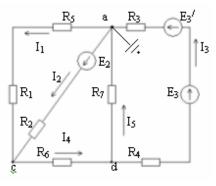


Рис 1.25 (б)

$$\begin{split} \varphi_{a} &= 0 \\ \begin{cases} \varphi_{d} \left(\frac{1}{R_{6}} + \frac{1}{R_{7}} + \frac{1}{R_{43}} \right) - \varphi_{c} \frac{1}{R_{6}} = -\frac{E_{3} + E_{3}'}{R_{43}} \\ \\ \varphi_{c} \left(\frac{1}{R_{15}} + \frac{1}{R_{2}} + \frac{1}{R_{6}} \right) - \varphi_{d} \frac{1}{R_{6}} = \frac{E_{2}}{R_{2}} \end{split}$$

T.K.
$$g = \frac{1}{R}$$

$$\begin{cases} \varphi_d (g_6 + g_7 + g_{43}) - \varphi_c g_6 = -(E_3 + E_3') g_{43} \\ \varphi_c (g_{15} + g_2 + g_6) - \varphi_d g_6 = E_2 g_2 \end{cases}$$

$$\begin{cases} \varphi_d g_{11} - \varphi_c g_{12} = J_{11} \\ \varphi_c g_{22} - \varphi_d g_{21} = J_{22} \end{cases}$$

Расчёт токов методом узловых потенциалов в системе Mathcad показан для схемы рисунок 1.25 (δ)

$$R1 := 3$$
 $R2 := 48$ $R3 := 12$ $R4 := 12$ $R5 := 3$ $R6 := 36$ $R7 := 24$ $E2 := 15$ $E3 := 33$ $J3 := 5$ $E30 := J3 \cdot R3$ $E30 = 60$

$$Jyz := \begin{pmatrix} -\frac{E3 + E30}{R4 + R3} \\ \frac{E2}{R2} \end{pmatrix} \qquad Jyz = \begin{pmatrix} -3.875 \\ 0.313 \end{pmatrix}$$
$$\phi := g^{-1} \cdot Jyz \qquad \phi = \begin{pmatrix} -35.663 \\ -3.15 \end{pmatrix}$$
$$\phi a := 0$$
$$\phi d := -35.663$$
$$\phi c := -3.15$$

$$I1 := \frac{\phi a - \phi c}{R1 + R5}$$

$$I1 = 0.525$$

$$I4 := \frac{\phi c - \phi d}{R6}$$

$$I4 = 0.903$$

$$I2 := \frac{\phi a - \phi c + E2}{R2}$$

$$I2 = 0.378$$

$$I5 := \frac{\phi d - \phi a}{R7}$$

$$I5 := -1.486$$

$$I3 := \frac{\phi d - \phi a + E3 + E30}{R4 + R3}$$

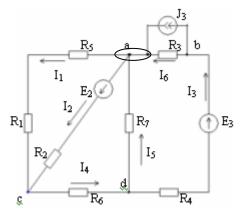
$$I3 = 2.389$$

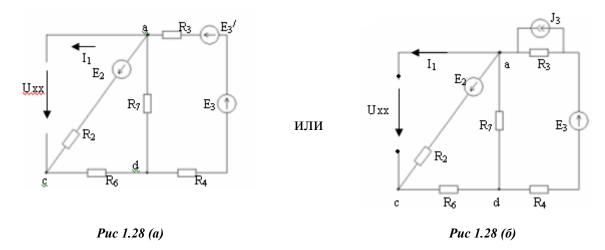
$$I6 := I3 - J3$$

$$I6 = -2.611$$

Рисунок 1.26. Расчет токов методом узловых потенциалов

Токи, найденные непосредственно по законам Кирхгофа, методом контурных токов, методом узловых потенциалов, одинаковые, следовательно задача решена верно.


1.9.4 Составим баланс мощностей.


Для составления баланса мощностей необходимо вернуться к первоначальной схеме. Определим напряжения на зажимах источников тока (рисунок 1.21).

$$\begin{array}{l} {\rm Ppotr}\coloneqq {\rm I1}^2\cdot ({\rm R1}+{\rm R5})+{\rm I2}^2\cdot {\rm R2}+{\rm I3}^2\cdot {\rm R4}+{\rm I4}^2\cdot {\rm R6}+{\rm I5}^2\cdot {\rm R7}+{\rm I6}^2\cdot {\rm R3}\\ \\ {\rm Ppotr}=241.17\\ \\ {\rm Pist}\coloneqq {\rm Uab}\cdot {\rm J3}+{\rm E3}\cdot {\rm I3}+{\rm E2}\cdot {\rm I2}\\ \\ {\rm Pist}=241.168\\ \\ {\rm ГДе}\,\,\,U_{ab}=-I_6R_3=31,\!331\,\,{\rm ИЛИ}\,\,\,U_{ab}=I_3R_4-I_5R_7-E_3=31,\!332 \end{array}$$

1.9.5 Определим ток *I*¹ в исходной схеме, используя метод эквивалентного генератора.

Исключаем из схемы первую ветвь и рассчитываем U_{acxx} . Затем исключаем из схемы все источники, оставляя их внутренние сопротивления, и находим входное сопротивление относительно зажимов a и c (рисунок 1.28).

После преобразования в схеме останется два контура, следовательно, наиболее рациональным для расчёта токов является метод контурных токов.

Для рис. 1.28, б
$$\begin{cases} I_{11}(R_2+R_6+R_7)-I_{22}R_7=E_2\\ -I_{11}R_7+I_{22}(R_7+R_4+R_3)=E_3+J_3R_3 \end{cases}$$

Затем определим напряжение U_{acxx} по второму закону Кирхгофа. Для определения величины входного сопротивления преобразуем электрическую схему (рис. 1.29).



Рисунок 1.29

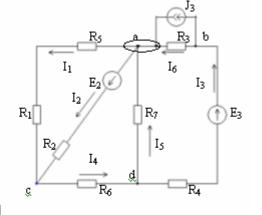
Расчёт тока в первой ветви методом эквивалентного генератора в системе Mathcad показан на рис. 1.30.

Рисунок 1.30

1.9.5 Построим потенциальную диаграмму для внешнего контура (рис. 1.31).

Для построения рассчитываем потенциалы после каждого элемента внешнего контура.

$$\phi a := 0$$


$$\phi b := \phi a + I6 \cdot R3 \qquad \phi b = -31.332$$

$$\phi e3 := \phi b - E3 \qquad \phi e3 = -64.332$$

$$\phi d := \phi e3 + I3 \cdot R4 \qquad \phi d = -35.664$$

$$\phi c := \phi d + I4 \cdot R6 \qquad \phi c = -3.156$$

$$\phi a := \phi c + I1 \cdot (R1 + R5) \qquad \phi a = -6 \times 10^{-3}$$

$$\phi := \begin{pmatrix} \phi_{a} \\ \phi_{b} \\ \phi_{e3} \\ \phi_{d} \\ \phi_{c} \\ \phi_{a} \end{pmatrix}$$

$$R := \begin{pmatrix} 0 \\ R3 \\ R3 \\ R3 + R4 \\ R3 + R4 + R6 \\ R3 + R4 + R6 + R1 + R5 \end{pmatrix}$$

построим потенциальную диаграмму

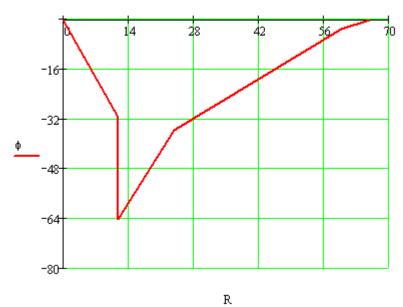
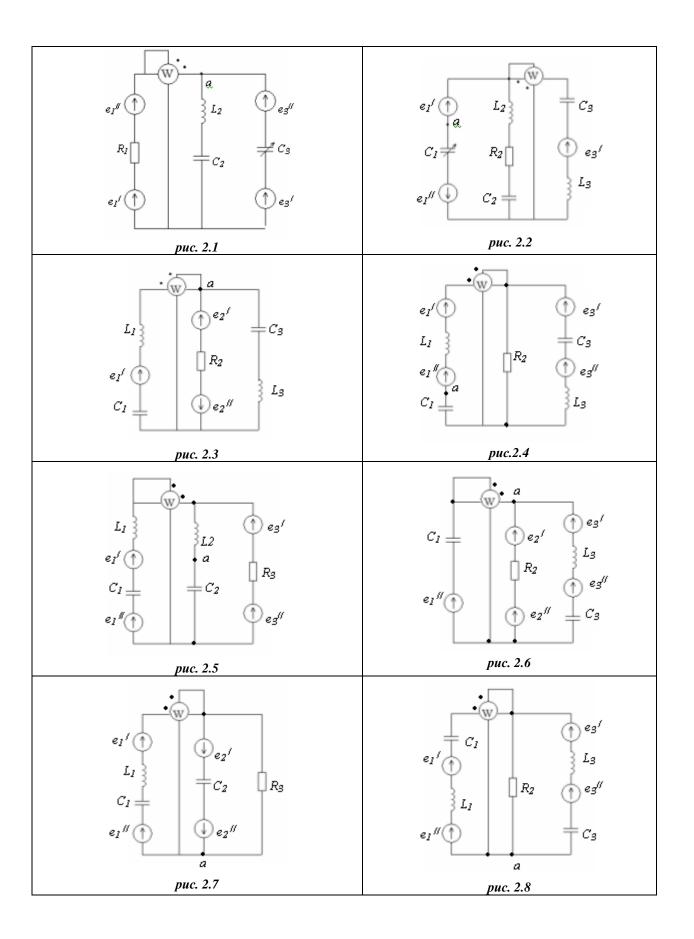
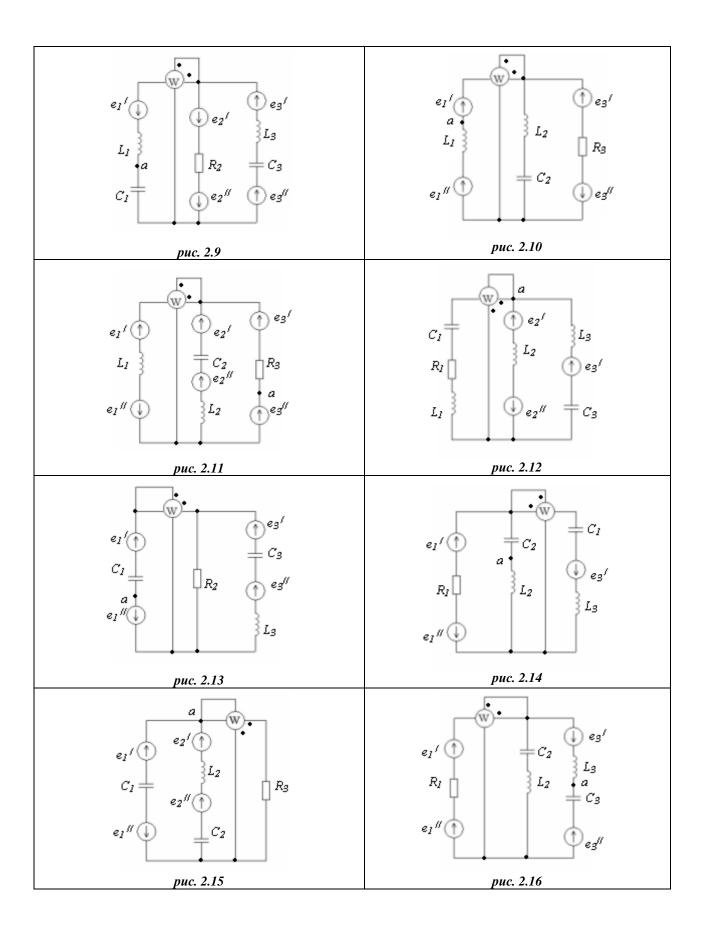


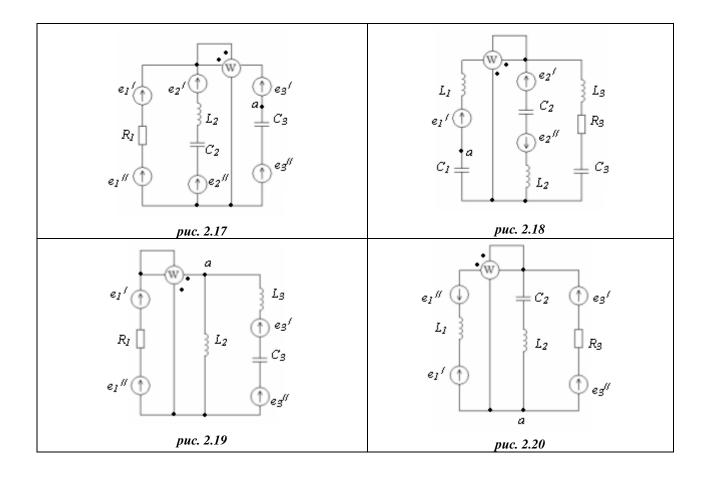
Рисунок 1.31

Задание 2. Электрические цепи синусоидального тока

<u>Задача.</u> Для электрической схемы, соответствующей номеру варианта (таблица 2.1) и изображенной на рисунке 2.1-2.20, выполнить следующее:


- 2.1 На основании законов Кирхгофа составить в общем виде систему уравнений для расчета токов во всех ветвях цепи, записав ее в двух формах: а) дифференциальной; б) символической.
- 2.2 Определить комплексы действующих значений токов во всех ветвях, воспользовавшись одним из методов расчета линейных электрических цепей.
- 2.3 По результатам, полученным в п. 2.2, определить показание ваттметра двумя способами: а) с помощью выражения для комплексов тока и напряжения на ваттметре; б) по формуле $UI\cos\varphi$. С помощью векторной диаграммы тока и напряжения, на которые реагирует ваттметр, пояснить определение угла $\varphi = \varphi_u \varphi_i$
- 2.4 Построить топографическую диаграмму, совмещенную с векторной диаграммой токов. При этом потенциал точки a, указанной по схеме, принять равным нулю.
- 2.5 Используя данные расчетов, полученных в п. 2.2, записать выражение для мгновенного значения тока и напряжения в ветви с элементом, перечёркнутым стрелкой. Построить графические зависимости указанных величин от ωt .
- 2.8 Полагая, что между любыми двумя индуктивными катушками, расположенными в различных ветвях заданной схемы, имеется магнитная связь при коэффициенте взаимной индуктивности, равном M, составить в общем виде систему уравнений по законам Кирхгофа для расчета токов во всех ветвях схемы, записав ее в двух формах: а) дифференциальной; б) символической.
 - 2.9 Примечания:
- 2.9.1 Ориентируясь на ранее принятые направления токов в ветвях, одноименные зажимы индуктивных катушек выбрать по своему усмотрению так, чтобы было их встречное включение, и обозначить на схеме эти зажимы звездочками (точками).
- $2.9.2 \ \mathrm{B}$ случае отсутствия в заданной схеме второй индуктивности вторую катушку ввести дополнительно в одну из ветвей, не содержащих L.


вариант	рисунок	L_1	L_2	L_3	C_1	C_2	C ₃	R_1	R_2	R_3	f, Гц	, , , , , , , , , , , , , , , , , , ,
варі	bnc		мГн			МкФ		Ом			2, 2 4	e_1 , B
1	2.15	-	6,33	-	10,6	-	-	-	-	10	500	99sin(ωt+20)
2	2.20	1,27	3,13	-	-	3,98	-	-	-	25	1000	71,5cos(\omegat+270)
3	2.1	-	1,74	-	-	5	4,02	17	-	1	1100	113sinωt
4	2.8	1,39	-	5,46	3,25	-	5	-	65	-	700	141sinot
5	2.13	-	-	2,63	1,25	-	8,84	-	65	-	2000	200cosωt
6	2.19	-	1,06	2,48	-	-	1,38	17	-	-	1800	0
7	2.10	1,27	0,8	-	-	6,38	-	-	_	25	1000	70,5cos(ωt-70)
8	2.3	40,2	-	_	35,4	-	53	-	25	-	150	$70,5\cos(\omega t + 257)$
9	2.14	-	4,19	1,92	-	0,79	0,74	17	_	-	3000	113sin(ωt-22)
10	2.4	1,04	-	2,64	0,76	-	3,23	-	65	-	2600	0
11	2.5	160	25	-	053	6,6	-	-	-	100	500	0
12	2.16	-	160	25	-	053	6,6	100	_	-	500	282sin(ωt-135)
13	2.6	_	-	31,8	1,59	-	1,59	-	100	-	1000	-
14	2.11	15,9	3,98	-	-	1,27	-	-	-	100	1000	0
15	2.17	-	6,8	-	-	0,91	0,46	100	_	-	3500	169cos(ωt-90)
16	2.9	6	-	0	0,8	0,51	0,4	-	100	-	4000	169sin(ωt+180)
17	2.7	1,6	-	-	5	0,55	-	_	-	10	5000	0
18	2.12	0	32	58	0	-	17,8	60		-	300	-
19	2.12	-	4,98	50	1	7,96	0,4	-	25	-	800	566cos(ωt-90)
20	2.18	32	36	0	4	2	4,8		-	70	400	141sin(ωt-300)
21	2.15	-	12,76		10,6	15,9		-		10	500	99sin(ωt-340)
22	2.13	2,12	3,98	-			-	-	-	25	600	,
23	2.20	2,12	3,47	-	-	7,56	8,03	17	-		550	70,5cos(ωt-90) 113sinωt
23	2.1	0.69		- 5 16	-	4,73	8,03		-	-		
25	2.13	0,68	-	5,46	1 25	·	8,84	65	65	-	1400	141cos(ωt+270)
25	2.13	-	2,12	2,63	1,25	-		- 17	65	-	2000 900	141cos(ωt-15) 0
		- 0.64		4,96	-	2 140	2,76		-	25		,
27	2.10	0,64	0,4	- 22.9	25.4	3,149	26.5	-	25	25	2000	70,5sin(ωt+20)
28	2.3	40,2	- 4.10	22,8	35,4	0.70	26,5	17	25	-	150	70,5cos(ωt-130)
29	2.14	2.00	4,19		1.51	0,79	1,47	17	-	-	3000	60sin(ωt+315)
30	2.4	2,08	- 41.0	5,27	1,51	- 11	6,46	-	65	-	1300	0
31	2.5	106	41,3	-	1,76	11	- 2.7.6	-	-	100	300	141cos(ωt-90)
32	2.16	-	66,2	10,3	- 2.10	0,22	2,76	100	-	-	1200	0
33	2.6	-	-	31,8	3,18	-	2	-	100	-	500	1(0:(00)
34	2.11	10	2,5	-	-	0,8	-	-	-	100	1590	169sin(ωt+90)
35	2.17	-	13,6	-	-	1,82	0,91	100	-	-	1750	0
36	2.9	6	-	4	0,8	-	0,2	-	100	-	4000	169cos(ωt+90)
37	2.7	4,8	-	-	2,54	11	-	-	-	10	2500	0
38	2.12	0	16	39	2	-	8,9	60	-	-	600	-
39	2.2	-	0	50	1	2	0,4	-	25	-	800	620sin(\omegat+54)
40	2.18	8	9	6,98	1	0,5	1,42	-	-	70	1600	141sin(ωt-300)
41	2.15	-	5,3	-	8,84	5	-	-	-	10	600	99cos(ωt+290)
42	2.20	2,12	2	-	-	13,2	-	-	-	25	600	56sin(ωt -60)
43	2.1	-	6,94	-	-	24,1	8,03	17	-	-	550	113cos(ωt -90)
44	2.8	0,68	-	2,73	1,62	-	2	-	65	-	1400	141sin ωt
45	2.13	-	-	6,35	2,5	-	10	-	65	-	1000	141cos(ωt -15)
46	2.19	-	2,37	2,79	-	-	3,99	17	-	-	800	0
47	2.10	1,27	4,78	-	-	3,19	-	-	-	25	1000	66,5sin ωt
48	2.3	10,1	-	5,69	8,85	-	6,62	-	25	-	600	70,5sin(ωt -13)
49	2.14	-	1,68	7,65	-	3,16	2,95	17	-	-	750	113cos(ωt -112)
50	2.4	2,08	-	2,94	1,51	-	2	-	65	-	1300	0


вариант	рисунок	L_1	L_2	L ₃	C ₁	C_2	C ₃	R_1	R ₂	R_3	f, Гц	, , , , , , , , , , , , , , , , , , ,
варі	bnc		мГн			МкФ		Ом			2, 2 4	e_1 , B
51	2.5	15,9	25	-	2,12	6,6	-	-	_	100	500	244cos ωt
52	2.16	-	31,8	25	-	1,59	6,6	100	1	-	500	0
53	2.6	-	1	63,6	3,18	ı	3,13	-	100	-	500	-
54	2.11	5	1,25	-	-	0,4	1	-	ı	100	3180	0
55	2.17	-	6,8	-	-	0,91	0,45	100	-	-	3500	0
56	2.9	12	-	8	1,6	ı	0,4	-	100	-	2000	169sin(ωt -180)
57	2.7	1,6	-	-	5	0,55	-	-	-	10	5000	282cos(ωt -90)
58	2.12	31,8	32	58	8,84	-	17,8	60	-	-	300	-
59	2.2	-	19,9	200	4	31,8	1,6	-	25	-	200	566sin ωt
60	2.18	32	36	27,8	4	2	5,69	-	-	70	400	$141\cos(\omega t + 330)$
61	2.15	-	4,78	-	5,3	15,9	-	-	-	10	1000	99cos(ωt -70)
62	2.20	0,85	0	-	-	5,32	-	-	-	25	1500	$70,5\cos(\omega t - 90)$
63	2.1	-	3,47	-	-	12	4,02	17	-	-	1100	113cos(ωt -90)
64	2.8	1,36	-	5,46	3,25	-	7	-	65	-	700	$100\cos(\omega t - 45)$
65	2.13	-	-	3,82	1,25	-	3,32	-	65	-	2000	141sin(ωt -285)
66	2.19	-	2,12	2,48	-	-	3,55	17	-	-	900	0
67	2.10	0,64	2,39	-	-	1,59	-	-	-	25	2000	70,5cos(ωt -70)
68	2.3	20,1	-	0	17,7	-	26,5	-	25	-	300	$70,5\cos(\omega t - 103)$
69	2.14	-	16,8	0	-	3,16	5,9	17	-	-	750	60sin(ωt -34)
70	2.4	1,04	-	1,47	0,76	-	5	-	65	-	2600	0
71	2.5	31,8	12,5	-	0,53	3,3	-	-	-	100	1000	0
72	2.16	-	160	25	-	0,53	6,6	100	-	-	500	0
73	2.6	-	-	15,9	1,59	-	5	-	100	-	1000	-
74	2.11	15,9	3,98	-	-	1,27	-	-	-	100	1000	-
75	2.17	-	23,8	-	-	3,18	1,59	100	-	-	1000	0
76	2.9	6	-	4	0,8	-	0,2	-	100	-	4000	169sin(ωt -180)
77	2.7	3,2	-	-	4	1,1	-	-	-	10	2500	0
<i>78</i>	2.12	7,96	8	14,5	2,21	-	4,45	60	-	-	1200	-
79	2.2	-	0	200	4	7	1,6	-	25	-	200	440sin(ωt -316)
80	2.18	16	18	0	2	1	8	-	-	70	800	$141\sin(\omega t + 60)$
81	2.15	-	6,38	-	10,6	6	-	-	-	10	500	$100\sin(\omega t + 60)$
82	2.20	2,12	4	-	-	13,3	-	-	-	25	600	70,5sinωt
83	2.1	-	3,47	-	-	5	8,03	17	-	-	550	$80\sin(\omega t + 45)$
84	2.8	1,36	-	10,9	3,25	-	9,46	-	65	-	700	141cos(ωt -90)
85	2.13	-	-	13,2	5	-	18,47	-	65	-	500	$141\cos(\omega t + 345)$
86	2.19	-	2,12	2,48	-	-	3,55	17	-	-	900	80sin(ωt +40)
87	2.10	1,27	4,78	-	-	3,19	-	-	-	25	1000	$70.5\sin(\omega t + 20)$
88	2.3	10	-	5	8,85	-	13,2	-	25	-	600	$70.5\sin(\omega t + 13)$
89	2.14	-	8,38	4	-	1,58	2,95	17	-	-	1500	$113\sin(\omega t + 338)$
90	2.4	2,08	-	5,27	1,51	-	6,46	-	65	-	1300	$100\sin(\omega t + 35)$
91	2.5	5	25	-	3,18	6,6	-	-	-	100	500	$141\cos(\omega t + 270)$
92	2.16	-	47,7	12,5	-	0,4	3,3	100	-	-	1000	0
93	2.6	-	-	15,9	1,59	-	7	-	100	-	1000	-
94	2.11	10	2,5	-	-	0,8	-	-	-	100	1590	0
95	2.17	-	13,6	-	-	1,82	0,91	100	-	-	1750	0
96	2.9	12	-	4	1,6	-	0,8	-	1400	-	2000	169sin(ωt+180)
97	2.7	2,4	-	-	1,27	0,55	-	-	-	10	5000	0
98	2.12	5	8	14,5	9	-	4,45	60	-	-	1200	-
99	2.2	-	5	100	2	9	0,8	-	25	-	400	566cos(ωt +270)
100	2.18	8	9	4	1	0,5	8	-	-	70	1600	141cos(ωt -30)

ш	×					
ані	,ио	"	′ _	" _	, _	" -
вариант	рисунок	e_1 , B	e_2 , B	e_2 , B	e_3 , B	e_3 , B
19	d					
1	2.15	0	179cos(ωt+270)	0	-	-
2	2.20	0	-	-	84,6sin(ωt-30)	0
3	2.1	0	-	-	46,2cos(ωt-90)	32,4sin(ωt-90)
4	2.8	0	-	-	282cos(ωt-140)	0
5	2.13	74,2sin(ωt+120)	-	-	282cos(ωt+290)	0
6	2.19	112,8cos(ωt-95)	-	-	56,4sin(ωt-40)	0
7	2.10	0	-	-	84,6sin(ωt-10)	0
8	2.3	-	68,5cos(ωt-174)	56sin(ωt-170)	-	-
9	2.14	0	-	-	56,4cos(ωt-147)	-
10	2.4	114sin(ωt+10)	-	-	200cos(ωt-85)	200sin(ωt-85)
11	2.5	114sinωt	-	-	141cosωt	0
12	2.16	400cos(ωt-30)	-	-	0	141sinωt
13	2.6	169sinωt	169sin(ωt+90)	0	169cos(ωt+90)	0
14	2.11	169sin(ωt-180)	240sin(ωt+45)	169sin(ωt-90)	169cosωt	0
15	2.17	240sin(ωt+135)	169sin(ωt+180)	0	0	169cos(ωt-90)
16	2.9	-	0	169cosωt	169sin <i>∞t</i>	0
17	2.7	282sinωt	282cos(ωt+90)	0		
18	2.12	-	689cos(ωt-78)	496sin(ωt-60)	705sin(ωt-53)	-
19	2.2	0	-	-	705sin(ωt+180)	-
20	2.18	-	62cos(ωt-125)	96,4sin(ωt+210)	-	-
21	2.15	0	0	179cos(ωt-90)	-	-
22	2.20	0	-	-	84,6sin(ωt+330)	0
23	2.1	0	•	=	56,6cos(ωt-125)	0
24	2.8	0	-	-	282sin(ωt+310)	0
25	2.13	0	-	-	282sin(ωt+25)	0
26	2.19	113sin(ωt-50)	-	-	56,4cos(ωt-130)	0
27	2.10	0	-	-	84,6cos(ωt-100)	0
28	2.3	-	84,6sin(ωt+310)	0	-	-
29	2.14	$60\cos(\omega t + 90)$	-	-	56,4sin(ωt+330)	-
30	2.4	141cos(ωt-80)	-	-	0	282sin(ωt-40)
31	2.5	0	-	-	141sin(ωt-27)	0
32	2.16	141sinωt	-	-	100sin(ωt+135)	100cos(ωt+135)
33	2.6	169 sin ωt	120sin(ωt +135)	120cos(ωt -45)	169sin(ωt -180)	0
34	2.11	240sin(ωt -135)	0	169sin ωt	169cos ωt	0
35	2.17	169cos ωt	169sin(ωt +90)	240sin(ωt -135)	0	169sin ωt
36	2.9	0	120sin(ωt -45)	120sin(ωt +45)	169sin ωt	0
37	2.7	282sin ωt	282cos(ωt +90)	0	-	-
38	2.12	-	$705\cos(\omega t - 37)$	0	705sin(ωt -53)	-
39	2.2	538cos(ωt +22)	=	-	705cos(ωt +90)	-
40	2.18	-	141cos(ωt -90)	0	-	-
41	2.15	0	$155\sin(\omega t + 30)$	69,5cos(ωt -150)	-	-
42	2.20	64,5sin(ωt -131)	-	-	84,6cos(ωt -120)	0
43	2.1	0	-	-	56,6sin(ωt -35)	0
44	2.8	0	-	-	181,4sin ωt	216cos(ωt -180)
45	2.13	0	-	-	0	282sin(ωt -335)
46	2.19	113cos(ωt -95)	-	-	40sin(ωt +5)	40sin(ωt -85)
47	2.10	24,2cos ωt	-	-	84,6cos(ωt -100)	0
48	2.3	-	84,6cos(ωt -133)	0	-	-
49	2.14	0	-	-	56,4sin(ωt -57)	-
50	2.4	141sin(ωt -10)	-	-	0	282cos(ωt -130)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	нт	ЮK	"	,	"	,	"
ST	ipua	исун	$e_1^{''}$, B	e_2 , B		e_3 , B	
S2	ва	p_{i}					
Section Sec	51	2.5	\ '	-	-	141sin(ωt -270)	Ů
		2.16		-	-	ŭ	$141\cos(\omega t + 270)$
55	-	2.6	` ′	169sin(ωt +90)	, and the second	` ′	Ů
Second			, ,		169sin <i>tot</i>	240cos(ωt +45)	169sin ωt
S7	55	2.17	169cos ωt	169sin(ωt -180)	-	0	169sin ωt
58	56	2.9	-		169cos <i>ωt</i>	0	169sin ωt
59	57	2.7	0	$282\sin(\omega t + 180)$	0	-	-
60 2.18 - 141cos(ωt +270) 0 - - 61 2.15 0 179sin ωt 0 - - - 62 2.20 0 - - 73sin ωt 42.3cos(ωt -160) 63 2.1 0 - - 282sin(ωt -50) 0 64 2.8 100sin(ωt -45) - - 282cos(ωt -65) 0 65 2.13 0 - - 282cos(ωt -65) 0 66 2.19 113cos(ωt -95) - - - 282cos(ωt -65) 0 67 2.10 0 - - 283,5sin ωt 14,7sin(ωt +90) 68 2.3 - 84,6sin(ωt -43) 0 - - 56,4sos(ωt +213) - 69 2.14 60sin(ωt +180) - - 56,4cos(ωt +213) - 70 2.24 141cos ωt - - 372sin(ωt +311) 282scos(ωt +120)	58		-	705sin(ωt -307)	0	$705\cos(\omega t + 217)$	-
61 2.15 0 179sin ωt 0 - - 73sin ωt 42.3cos(ωt-160) 63 2.1 0 - - 56.6sin(ωt -35) 0 64 2.8 100sin(ωt -45) - - 282sin(ωt -50) 0 65 2.13 0 - - 282cos(ωt -55) 0 66 2.19 113cos(ωt -95) - - 56,4sin(ωt -40) 0 67 2.10 0 - - 83,5sin ωt 14,7sin(ωt +90) 68 2.3 - 84.6sin(ωt -43) 0 - - 70 2.14 60sin(ωt +180) - - 56,4cos(ωt +213) - 70 2.24 141cos ωt - - 0 282sin(ωt 40) 71 2.5 141sin ωt - - 372sin(ωt +31) 282cos(ωt +11) 120sin(ωt +180) 0 120cos(ωt +45) 120sin(ωt +35) 120sin(ωt +35) 120sin(ωt +35) 120sin(ωt +36) 120sin(59	2.2	0	-	-	705cos(ωt -270)	-
62 2.20 0 - - 73sin ot 42.3cos(ωt -160) 63 2.1 0 - - 56.6sin(ωt -35) 0 64 2.8 100sin(ωt -45) - - 282sin(ωt -50) 0 65 2.13 0 - - 282cos(ωt -65) 0 66 2.19 113cos(ωt -95) - - 56,4sin(ωt -40) 0 67 2.10 0 - - 83,5sin ωt 14,7sin(ωt +90) 68 2.3 - 84.6sin(ωt -43) 0 - - 69 2.14 60sin(ωt +180) - - 0 2282sin(ωt -40) 70 2.4 141cos (ωt -80) - - 0 2282sin(ωt -40) 71 2.5 141sin ωt - - 372sin(ωt -811) 282cos(ωt +120) 72 2.16 141cos ωt - - 0 141sin ωt 120sin(ωt -45) 120sin(ωt -135) 74 <th< td=""><td>60</td><td>2.18</td><td>-</td><td>\ /</td><td></td><td>-</td><td>-</td></th<>	60	2.18	-	\ /		-	-
63 2.1 0 - - 56.6sin(ωt -35) 0 64 2.8 100sin(ωt -45) - - 282sin(ωt -50) 0 65 2.13 0 - - 282cos(ωt -55) 0 66 2.19 113cos(ωt -95) - - 56,4sin(ωt -40) 0 67 2.10 0 - - 83,5sin ωt 14,7sin(ωt +90) 68 2.3 - 84.6sin(ωt -43) 0 - - 69 2.14 60sin(ωt +180) - - 56,4cos(ωt +213) - 70 2.4 141cos(ωt -80) - - 0 282sin(ωt -40) 71 2.5 141sin ωt - - 372sin(ωt -811) 282cos(ωt +120) 71 2.5 141sin ωt - - 372sin(ωt -811) 282cos(ωt +120) 72 2.16 141cos ωt - - 0 142sin ωt 73 2.6 169sin ωt <td>61</td> <td>2.15</td> <td></td> <td>179sin ωt</td> <td>0</td> <td>-</td> <td>-</td>	61	2.15		179sin ωt	0	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	62	2.20	0	-	-	73sin ωt	42.3cos(ωt -160)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63		0	-	-	56.6sin(ωt -35)	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100sin(ωt -45)	-	-	282sin(ωt -50)	
67 2.10 0 - 83,5sin ot 14,7sin(ωt +90) 68 2.3 - 84.6sin(ωt +43) 0 - - 70 2.14 60sin(ωt +180) - - 56,4cos(ωt +213) - 70 2.4 141cos(ωt +80) - - 0 282sin(ωt -40) 71 2.5 141sin ot - - 372sin(ωt -811) 282cos(ωt +120) 72 2.16 141cos ωt - - 372sin(ωt -811) 282cos(ωt +120) 73 2.6 169sin ωt 169cos ωt 0 120cos(ωt +45) 120sin(ωt -135) 74 2.11 169sin ωt 169cos ωt 169sin(ωt +90) 0 169cos ωt 169sin(ωt +90) 0 75 2.17 169cos ωt 169sin(ωt -180) 0 240sin(ωt +45) 169sin(ωt -90) 76 2.9 0 0 169cos ωt 169sin ωt 0 77 2.7 282cos(ωt -90) 141sin(ωt -90) 325sin(ωt -30)	65	2.13	0	-	-	, ,	0
68 2.3 - 84.6sin(ωt -43) 0 - - 69 2.14 60sin(ωt +180) - - 56,4cos(ωt +213) - 70 2.4 141cos(ωt -80) - - 0 282sin(ωt -40) 71 2.5 141sin ωt - - 372sin(ωt -811) 282cos(ωt +120) 72 2.16 141cos ωt - - 0 141sin ωt 73 2.6 169sin ωt 169cos ωt 0 120cos(ωt +45) 120sin(ωt -135) 74 2.11 169sin(ωt +180) 0 169cos ωt 169sin(ωt +90) 0 75 2.77 169cos ωt 169sin(ωt +40) 0 240sin(ωt +45) 169sin(ωt -90) 76 2.9 0 0 169cos ωt 169sin ωt 0 77 2.7 282cos(ωt +90) 141sin(ωt -90) 325sin(ωt -30) - - 78 2.12 - 705cos(ωt +35) 0 705cos(ωt -143) - <t< td=""><td>66</td><td>2.19</td><td>113cos(ωt -95)</td><td>-</td><td>-</td><td></td><td></td></t<>	66	2.19	113cos(ωt -95)	-	-		
69 2.14 60sin(ωt+180) - - 56,4cos(ωt+213) - 70 2.4 141cos(ωt+80) - - 0 282sin(ωt+40) 71 2.5 141sin ωt - - 372sin(ωt+811) 282cos(ωt+120) 72 2.16 141cos ωt - - 0 141sin ωt 73 2.6 169sin ωt 169cos ωt 0 120cos(ωt+45) 120sin(ωt-135) 74 2.11 169cos ωt 169sin(ωt-180) 0 240sin(ωt+45) 169sin(ωt-90) 75 2.17 169cos ωt 169sin(ωt-90) 0 169cos ωt 169sin(ωt-45) 169sin(ωt-90) 76 2.9 0 0 169cos ωt 169sin ωt 0 - - 77 2.7 282cos(ωt-90) 141sin(ωt-90) 325sin(ωt-30) - - - - 705cos(ωt-143) - - - - - - - - - - - - <	67		0	-		83,5sin ωt	$14,7\sin(\omega t + 90)$
70 2.4 141cos(ωt -80) - - 0 282sin(ωt -40) 71 2.5 141sin ωt - - 372sin(ωt -811) 282cos(ωt +120) 72 2.16 141cos ωt - - 0 141sin ωt 73 2.6 169sin ωt 169cos ωt 0 120cos(ωt -45) 120sin(ωt -135) 74 2.11 169sin(ωt +180) 0 169cos ωt 169sin(ωt -90) 0 75 2.17 169cos ωt 169sin(ωt -180) 0 240sin(ωt +45) 169sin(ωt -90) 76 2.9 0 0 169cos ωt 169sin ωt 0 77 2.7 282cos(ωt -90) 141sin(ωt -90) 325sin(ωt -30) - - 79 2.2 392cos(ωt +40) - - 705cos(ωt -143) - 79 2.2 392cos(ωt +40) - - 705cos(ωt -270) - 80 2.18 - 141cos(ωt +270) 0 - - <tr< td=""><td>68</td><td></td><td>-</td><td>84.6sin(ωt -43)</td><td>0</td><td>-</td><td>-</td></tr<>	68		-	84.6sin(ωt -43)	0	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	69		$60\sin(\omega t + 180)$	-	-	$56,4\cos(\omega t + 213)$	-
72 2.16 141cos ωt - - 0 141sin ωt 73 2.6 169sin ωt 169cos ωt 0 120cos(ωt +45) 120sin(ωt -135) 74 2.17 169sin(ωt +180) 0 169cos(ωt -90) 169sin(ωt +45) 169sin(ωt +90) 75 2.17 169cos ωt 169sin(ωt +180) 0 240sin(ωt +45) 169sin(ωt -90) 76 2.9 0 0 169cos ωt 169sin ωt 0 77 2.7 282cos(ωt -90) 141sin(ωt -90) 325sin(ωt -30) - - 78 2.12 - 705sin(ωt +53) 0 705cos(ωt -143) - 79 2.2 392cos(ωt +40) - - 705cos(ωt -270) - 80 2.18 - 141cos(ωt +270) 0 - - 81 2.15 63,5sin(ωt -56) 178cos(ωt -90) 0 - - 82 2.20 0 - - 56,6cos(ωt +225) 0 <t< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>Ŭ</td><td></td></t<>				-	-	Ŭ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				=	=	372sin(ωt -811)	`
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	, , ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, and the second		120sin(ωt -135)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			`			`	Ů
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,		`	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						169sin ωt	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			282cos(ωt -90)		,	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	$705\sin(\omega t + 53)$			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			392cos(ωt +40)	1.41 (270)		705cos(ωt -270)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			- (2.5 : (+ 56)	`		=	-
83 2.1 80cos(ωt -135) - - 56,6cos(ωt +235) 0 84 2.8 0 - - 0 282sin(ωt -50) 85 2.13 0 - - 200sin(ωt +45) 116sin(ωt -11) 86 2.19 80sin(ωt -50) - - 56cos(ωt -130) 0 87 2.10 0 - - 86cos(ωt -100) 0 88 2.3 - 68.5sin(ωt +100) 56cos(ωt +100) - - 89 2.14 0 - - 56,4cos(ωt -147) - 90 2.4 100cos(ωt -35) - - 0 282sin(ωt -40) 91 2.5 0 - - 141sin(ωt +90) 0 92 2.16 141sin(ωt -270) - - 0 141cos(ωt -90) 93 2.6 169sin ωt 169cos ωt 0 169cos ωt 0 94 2.11 169sin(ωt +180) <th< td=""><td></td><td></td><td>` ` ` `</td><td>1/8cos(\text{\ti}\text{\texict{\texit{\text{\text{\texi}\text{\texit{\texit{\text{\tinte\tintet{\text{\texictex{\tinte\tint{\texit{\texi{\texi{\texi{\tinte\tint{\tintet{\texiclex{\</td><td></td><td>- 04.6 (+ + 240)</td><td>-</td></th<>			` ` ` `	1/8cos(\text{\ti}\text{\texict{\texit{\text{\text{\texi}\text{\texit{\texit{\text{\tinte\tintet{\text{\texictex{\tinte\tint{\texit{\texi{\texi{\texi{\tinte\tint{\tintet{\texiclex{\		- 04.6 (+ + 240)	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	, , ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	-	-		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		`	` ′
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		` '	-	-	` '	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			68 5gin(est ±100)	56009(6)t ±100)	ουτυς(ωι -100)	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			00.38III(wt ±100)		56 Acos(est 147)	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		, , , , , , , , , , , , , , , , , , ,	282sin(at 40)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, , , , , ,	<u> </u>		•	` ′
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>		`	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	169cos est		· ·	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			`				
97 2.7 282sin ωt 282cos(ωt -270) 0 - - 98 2.12 - 689sin(ωt +12) 496cos(ωt -150) 705sin(ωt +307) - 99 2.2 0 - - 705sin(ωt -180) -			-	` '	-		` '
98 2.12 - 689sin(ωt +12) 496cos(ωt -150) 705sin(ωt +307) - 99 2.2 0 - - 705sin(ωt -180) -			282sin ωt			-	-
99 2.2 0 - 705sin(ωt -180) -						705sin(ot +307)	-
				-	-	\ /	
$100 + 2.10 + - + 0.2 \sin(\omega t + 3.20) + 90.3 \cos(\omega t + 111) + - + - + - + - + - + - + - + + - + + - + + - +$	100	2.18	-	62sin(ωt +326)	96,5cos(ωt +111)	-	-

2.10 Пример выполнения расчётно-графического задания №2

2.10.1 На основании законов Кирхгофа составить в общем виде систему уравнений для расчёта токов во всех ветвях цепи, изображенной на рис. 2.21, записав ее в двух формах: а) дифференциальной; б) символической.

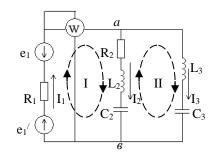
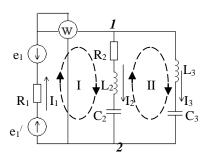


Рисунок 2.21

Дифференциальная форма:

$$\begin{cases} i_{1} - i_{2} - i_{3} = 0 \\ i_{1}R_{1} + i_{2}R_{2} + L_{2}\frac{di_{2}}{dt} + \frac{1}{C_{2}}\int i_{2}dt = e_{1}' - e_{1} \\ L_{3}\frac{di_{3}}{dt} + \frac{1}{C_{3}}\int i_{3}dt - i_{2}R_{2} - L_{2}\frac{di_{2}}{dt} - \frac{1}{C_{2}}\int i_{2}dt = 0 \end{cases}$$


Символическая форма:

$$\begin{cases} \dot{I}_{1} - \dot{I}_{2} - \dot{I}_{3} = 0 \\ \dot{I}_{1}R_{1} + \dot{I}_{2}R_{2} + j\omega L_{2}\dot{I}_{2} - j\frac{1}{\omega C_{2}}\dot{I}_{2} = \dot{E}_{1}' - \dot{E}_{1} \\ \dot{I}_{3}j\omega L_{3} - j\frac{1}{\omega C_{3}}\dot{I}_{3} - \dot{I}_{2}R_{2} - j\omega L_{2}\dot{I}_{2} + j\frac{1}{\omega C_{2}}\dot{I}_{2} = 0 \end{cases}$$

2.10.2 Определить комплексы действующих значений токов во всех ветвях, воспользовавшись одним из методов расчёта линейных электрических цепей, если R_1 =40 Ом, R_2 =25 Ом, L_2 =199 мГн, C_2 =100 мкФ, L_3 =410 мГн; C_3 =1600 мкФ, f=20 Гц, e_1 = 200sin(ωt + 45°) B, e_1' = 566cos(ωt + 270°) B.

Так как в схеме два узла, наиболее рациональным для расчёта цепи будет метод двух узлов.

1) Рассчитаем комплексы действующих значений токов во всех ветвях, воспользовавшись методом узловых потенциалов.

В первую очередь, необходимо от мгновенных значений ЭДС перейти к комплексам действующих значений ЭДС. Переход осуществляется только от положительной синусоиды.

$$e_1 = 200\sin(\omega t + 45^\circ) \Rightarrow \dot{E}_1 = \frac{200}{\sqrt{2}}e^{j45} = 141,42e^{j45} = 100 + j100$$
 (B)

$$e'_1 = 566\cos(\omega t + 270^\circ) \Rightarrow \dot{E}'_1 = \frac{566}{\sqrt{2}}e^{j270+90} = \frac{566}{\sqrt{2}}e^{j360} = 400,222$$
 (B)

Любой узел можно заземлить. Токораспределение при этом не изменится. В этой схеме: $\omega = 2\pi f = 2 \cdot 3,14 \cdot 20 = 125,6$ (рад/с)

Определим сопротивления реактивных элементов цепи:

$$X_{L2} = \omega L_2 = 125,6 \cdot 199 \cdot 10^{-3} \approx 25 \text{ (OM)}, \qquad X_{L3} = \omega L_3 = 125,6 \cdot 410 \cdot 10^{-3} \approx 52 \text{ (OM)},$$

$$X_{C2} = \frac{1}{\omega C_2} = \frac{1}{125,6 \cdot 100 \cdot 10^{-6}} \approx 80 \text{ (OM)}, \qquad X_{C3} = \frac{1}{\omega C_3} = \frac{1}{125,6 \cdot 1600 \cdot 10^{-6}} \approx 5 \text{ (OM)}.$$

Комплексные сопротивления ветвей:

$$\dot{Z}_{1} = R_{1} = 40 \text{ (OM)}$$

$$\dot{Z}_{2} = R2 + j\omega L_{2} - j\frac{1}{\omega C_{2}} = R2 + j(X_{L2} - X_{C2}) = 25 + j(25 - 80) = 25 - j55 \approx 60e^{-j65} \text{ (OM)}$$

$$\dot{Z}_{3} = j\omega L_{3} - j\frac{1}{\omega C_{2}} = j(X_{L3} - X_{C3}) = j(52 - 5) = j46,5 = 46,5e^{j90} \text{ (OM)}$$

Соответственно комплексные проводимости ветвей:

$$\dot{Y}_{1} = \frac{1}{\dot{Z}_{1}} = \frac{1}{40} = 0.025 \text{ (CM)}$$

$$\dot{Y}_{2} = \frac{1}{\dot{Z}_{2}} = \frac{1}{60e^{-j65}} = 0.01666e^{j65} = 6.939 \cdot 10^{-3} + j0.015 \text{ (CM)}$$

$$\dot{Y}_{3} = \frac{1}{\dot{Z}_{3}} = \frac{1}{j46.5} = -j0.021 \text{ (CM)}$$

Пусть $\varphi_b = 0$, тогда по методу узловых потенциалов имеем:

$$\dot{\varphi}_{a} = \frac{\left(\dot{E}_{1}' - \dot{E}_{1}\right) \cdot \dot{Y}_{1}}{\dot{Y}_{1} + \dot{Y}_{2} + \dot{Y}_{3}} = \frac{\left(400,222 - (100 + j100)\right) \cdot 0,025}{0,025 + 6,939 \cdot 10^{-3} + j0,015 - j0,021} = \frac{7,9e^{-j18}}{0,0325e^{-j11}} = 243,077e^{-j7} = 241,26 - j29,62 \quad (B)$$

Токи в ветвях находим по обобщенному закону Ома:

$$\begin{split} \dot{I}_1 &= \frac{\dot{\varphi}_b - \dot{\varphi}_a + \dot{E}_1' - \dot{E}_1}{\dot{Z}_1} = \\ &= \frac{0 - \left(241,26 - j29,62\right) + 400,222 - \left(100 + j100\right)}{40} = \frac{91,8e^{-j50}}{40} = 2,29e^{-j50} = 1,47 - j1,75 \quad (A) \\ \dot{I}_2 &= \frac{\dot{\varphi}_a - \dot{\varphi}_b}{\dot{Z}_2} = \frac{243,077e^{-j7}}{60e^{-j65}} = 4,05e^{j58} = 2,14 + j3,43 \quad (A) \\ \dot{I}_3 &= \frac{\dot{\varphi}_a - \dot{\varphi}_b}{\dot{Z}_3} = \frac{243,077e^{-j7}}{46,5e^{j90}} = 5,223e^{-j97} = -0,64 - j5,18 \quad (A) \end{split}$$

Правильность расчета можно проверить, если найденные значения токов подставить в уравнения, составленные по двум законам Кирхгофа.

Уравнения, составленные по законам Кирхгофа для данной схемы имеют вид:

$$\begin{cases} \dot{I}_{1} - \dot{I}_{2} - \dot{I}_{3} = 0 \\ \dot{I}_{1}R_{1} + \dot{I}_{2}R_{2} + j\omega L_{2}\dot{I}_{2} - j\frac{1}{\omega C_{2}}\dot{I}_{2} = \dot{E}_{1}' - \dot{E}_{1} \\ \dot{I}_{3}j\omega L_{3} - j\frac{1}{\omega C_{3}}\dot{I}_{3} - \dot{I}_{2}R_{2} - j\omega L_{2}\dot{I}_{2} + j\frac{1}{\omega C_{2}}\dot{I}_{2} = 0 \end{cases}$$

Проверим первое уравнение системы:

$$\begin{split} \dot{I}_1 - \dot{I}_2 - \dot{I}_3 &= 0\\ \left(1,47 - j1,75\right) - \left(2,14 + j3,43\right) - \left(-0,64 - j5,18\right) &=\\ &= \left(1,47 - 2,14 + 0,64\right) + j\left(-1,75 - 3,43 + 5,18\right) = -0,03 \approx 0 \end{split}$$

Проверим второе уравнение системы:

$$\begin{split} \dot{I}_1 R_1 + \dot{I}_2 R_2 + j\omega L_2 \dot{I}_2 - j\frac{1}{\omega C_2} \dot{I}_2 &= \dot{E}_1' - \dot{E}_1 \\ 2,29 e^{-j50} \cdot 40 + 4,05 e^{j58} \cdot \left[25 + j(25 - 80)\right] &= 400,222 - \left(100 + j100\right) \\ 91,6 e^{-j50} + 243 e^{-j7} &= 300,222 - j100 \\ 58,88 - j70,169 + 241,188 - j29,614 &= 300,222 - j100 \\ 300,068 - j99,783 \approx 300,222 - j100 \end{split}$$

Проверим третье уравнение системы:

$$\dot{I}_{3} j\omega L_{3} - j\frac{1}{\omega C_{3}} \dot{I}_{3} - \dot{I}_{2} R_{2} - j\omega L_{2} \dot{I}_{2} + j\frac{1}{\omega C_{2}} \dot{I}_{2} = 0$$

$$5,223e^{-j97} \cdot j(52-5) - 4,05e^{j58} [25 + j(25-80)] = 0$$

$$242,869e^{-j7} - 243e^{-j7} = 0$$

Как видно, все уравнения дают тождества, а небольшие неточности обусловлены округлением величин при вычислениях.

Пример расчёта в системе Mathcad показан на рисунке 2.22. Дано

$$\begin{aligned} \text{R1} &:= 40 \qquad \text{R2} := 25 \qquad \text{L2} := 199 \cdot 10^{-3} \qquad \text{L3} := 410 \cdot 10^{-3} \qquad \text{C2} := 100 \cdot 10^{-6} \qquad \text{C3} := 1600 \cdot 10^{-6} \\ \\ \text{rd}(x) &:= x \cdot \frac{180}{\pi} \qquad \text{dr}(x) := x \cdot \frac{\pi}{180} \qquad \text{f} := 20 \qquad \qquad \omega := 2 \cdot \pi \cdot \text{f} \qquad j := \sqrt{-1} \end{aligned}$$

Комплексные действующие значения ЭДС

$$E1 := \left(\frac{200}{\sqrt{2}}\right) \cdot e^{j \cdot dr(45)}$$

E1 :=
$$\left(\frac{200}{\sqrt{2}}\right) \cdot e^{j dr(45)}$$
 E11 := $\left(\frac{566}{\sqrt{2}}\right) \cdot e^{j dr(270+90)}$

$$E1 = 100 + 100i$$

$$E11 = 400.222$$

Комплексные сопротивления ветвей

$$Z1 := R1$$

$$Z1 = 40$$

$$Z2 := R2 + j \cdot \omega \cdot L2 - j \cdot \frac{1}{\omega \cdot C2}$$

$$Z2 = 25 - 54.57i$$

$$Z3:=j\cdot\omega\cdot L3-j\cdot\frac{1}{\omega\cdot C3}$$

Комплексные проводимости ветвей

$$Y1 = 0.02$$

$$Y2 := \frac{1}{Z}$$

$$Y2 := \frac{1}{72}$$
 $Y2 = 6.939 \times 10^{-3} + 0.015i$

$$Y3 := \frac{1}{Z^3}$$

$$Y3 := \frac{1}{73}$$
 $Y3 = -0.021i$

Напряжение между узлами 1 и 2

U12 :=
$$\frac{\frac{\text{E11-E1}}{\text{Z1}}}{\frac{1}{\text{Z1}} + \frac{1}{\text{Z2}} + \frac{1}{\text{Z3}}}$$
 U12 = 241.04 - 30.451i

Токи в ветвях определяем по обобщенному закону Ома

$$I1 := \frac{-U12 + E11 - E1}{71}$$
 $I1 = 1.48 - 1.739i$ $|I1| = 2.283$ $rd(arg(I1)) = -49.604$

$$rd(arg(11)) = -49.60$$

$$12 := \frac{U12}{Z2}$$

$$|2 = 2.134 + 3.44i$$
 $|2| = 4.048$ $rd(arg(|2)) = 58.186$

$$13 := \frac{U12}{Z3}$$

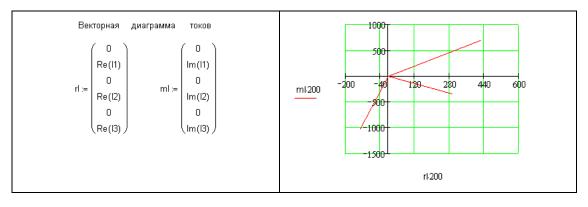
$$|3 = -0.654 - 5.178i$$
 $|3| = 5.219$ $rd(arg(3)) = -97.2$

$$rd(arg(13)) = -97.2$$

Решим эту же задачу по законам Кирхгофа.

$$Z := \begin{pmatrix} 1 & -1 & -1 \\ Z1 & Z2 & 0 \\ 0 & -72 & 73 \end{pmatrix} \qquad E := \begin{pmatrix} 0 \\ E11 - E1 \\ 0 \end{pmatrix}$$

$$Z^{-1} = \begin{pmatrix} 0.753 + 0.149i & 6.172 \times 10^{-3} - 3.735i \times 10^{-3} & 3.21 \times 10^{-3} - 0.016i \\ -0.118 - 0.498i & 2.962 \times 10^{-3} + 0.012i & -0.011 + 2.546i \times 10^{-3} \\ -0.128 + 0.647i & 3.21 \times 10^{-3} - 0.016i & 0.014 - 0.019i \end{pmatrix}$$


$$I := Z^{-1} \cdot E \qquad I = \begin{pmatrix} 1.48 - 1.739i \\ 2.134 + 3.44i \\ -0.654 - 5.178i \end{pmatrix}$$

токи получились такими же, как и методом узловых потенциалов, следовательно, задача решена, верно.

2.10.3 По результатам, полученным в пункте 2.10.2, определить показание ваттметра по формуле $UI \circ \varphi$. Прибор ваттметр предназначен для измерения активной мощности. Два зажима прибора, включенных последовательно с участком цепи, на котором измеряется активная мощность, определяют ток на этом участке, а два зажима включенных параллельно — измеряют напряжение на этом же участке.

Рисунок 2.22

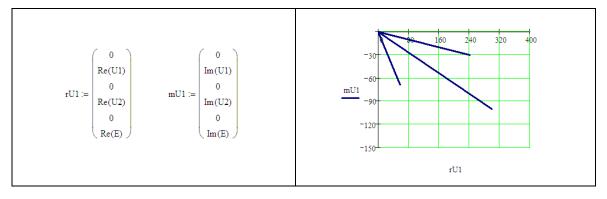
2.10.4 Построить векторные диаграммы токов и напряжений. Построение векторных диаграмм токов и напряжений выполним в программе MathCAD.

Векторная диаграмма напряжений для контура 1

$$E := E11 - E1$$

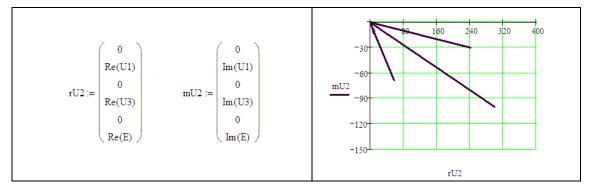
$$U := I1 \cdot Z1 + I2 \cdot Z2$$

$$E = 300.222 - 100i$$

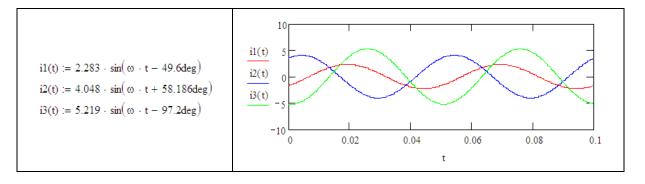

$$U = 300.222 - 100i$$

$$U1 := I1 \cdot Z1$$

$$U2 := I2 \cdot Z2$$


$$U1 = 59.183 - 69.549i$$

$$U2 = 241.04 - 30.451i$$



Векторная диаграмма напряжений для контура 2

$$U := I1 \cdot Z1 + I3 \cdot Z3$$

 $U = 300.222 - 100i$

Временные диаграммы токов представлены на рисунке

