МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА, ТРАНСПОРТА И АРХИТЕКТУРЫ им. Н. Исанова

Кафедра «Прикладная информатика»

СИЛЛАБУС (Рабочая программа) дисциплины «Методы машинного обучения»

для направления: 710100- Компьютерные и информационные технологии по образовательной программе: "PhD - Информационные системы и процессы"

Форма обучения: очная

Докторантура	
Семестр	2
Количество кредитов	10
Лекции, часов	30
Лабораторные занятия, часов	60
Самостоятельная работа, часов	210
СРСП	
Формы контроля	экзамен

Бишкек -2022

Рабочая программа предназначена для преподавания дисциплины "Методы машинного обучения" докторантам очной формы обучения по направлению 710100 — Компьютерные и информационные технологии (ОП:Информационные системы и процессы) во 2 семестре.

Составитель. _ к.ф.-м.н., доцент Орозобекова А.К.____

Тематический план

модульной программы по дисциплине «Методы машинного обучения» для PhD по направлению 710100 «**Компьютерные и информационные системы**»

No	№	TT.		Лабораторные		
дисцип-	темы	Лекционные занятия		занятия		
линар-	лекц	Наименование темы		Наименование темы		
НОГО	ий				<u>L</u>	PC
модуля	(лаб)		JIK		JIB	C
	1	Введение в Машинное	2	Работа с табличными	2	
		обучение		данными и Pandas		
	2	Линейная регрессия,	2	sklearn и линейная	4	14
		функции потерь в		регрессия		
		регрессии.				
	3	Обобщающая	2	Матрично-векторное	4	14
		способность,		дифференцирование		
		градиентные методы				
		обучения.				
	4	Градиентные методы,	2	Работа с данными и	4	14
		регуляризация		признаками		
TIME 1	5	Линейная	2	Метрики	4	16
ДМ 1		классификация		классификации		
	6	Метрики качества	2	Калибровка	4	14
		классификации,		вероятностей.		
		логистическая				
		регрессия.				
	7	Полиномиальная	2	Решающие деревья	4	14
		регрессия.		_		
		Аппроксимация				
		полиномами высокой				
		степени				
	8	Многоклассовая	2	Разложение ошибки на	4	14
		классификация		смещение и разброс		
ДМ 2	9	Решающие деревья	2	Градиентный бустинг	4	16
	10	Бэггинг, случайные леса	2	Градиентный бустинг	6	16
		и разложение ошибки на		-		
		смещение и разброс.				
	11	Градиентный бустинг	2	Виды градиентного	4	14
				бустинга: XGB,		
				LightGBM, CatBoost		
	12	Градиентный бустинг.	2	Виды градиентного	4	16
		Альтернативный		бустинга: XGB,		
		подход.		LightGBM, CatBoost		

13	Линейные композиции, бустинг и случайные леса	2	Кластеризация	4	16
14	Градиентный бустинг над деревьями решений	2	Методы понижения размерности: PCE, tSNE	4	16
15	Кластеризация. Обучение без учителя	2	Методы понижения размерности: PCE, tSNE	4	16
	Всего:	30		60	210

Тематический план составила

к.ф.-м.н., доцент Орозобекова А.К._

ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель курса (дисциплины): изучение методов машинного обучения, обучения и построение моделей для различных прикладных задач с применением библиотек Python.

Основные задачи курса:

- получение практических навыков по реализации и функционированию машинного обучения;
- изучение ряда подходов построения линейных моделей задач прикладного характера;
- изучение подходов к построению обобщенных линейных моделей с применением полиномов очень высоких степеней
- обучающие модели для линейных процессов, обученная на полиномиальных признаках такие модели
- программная реализация конкретных задач прикладного характера.

Результаты обучения дисциплины: «Методы машинного обучения»

РОД1 – знать основы машинного обучения;

РОД2 – знать теоретические основы регрессионного анализа;

РОД3- владеть основами программирования Python и его библиотеками;

РОД4- знать основы построения линейных моделей задач прикладного характера

В результате изучения дисциплины PhD студенты должны: знать:

- основы машинного обучения;
- основы построения линейных моделей задач прикладного характера;
- основы программирования на Python и его библиотеки

уметь:

- применть современные технологии построения моделей, регуляризация переобученных моделей, которые могут быть использованы для включения параметров регуляризации.

владеть:

- обучающими моделями для линейных процессов на полиномиальных признаках.
- программной реализацией конкретных задач прикладного характера.

ПРЕДЛАГАЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

- владением методологией теоретических и экспериментальных исследований в области профессиональной деятельности (ОК-3);
- готовность участвовать в работе республиканских и международных исследовательских коллективов по решению научно-исследовательских задач (ИК-2);
- способность к формальной постановке задач системного анализа, оптимизации, управления, принятия решений и обработки информации (ПК-1);
- способностью исследовать прикладные информационные системы для различных областей применения, строить аналитические, процедурные, информационные модели предметной области (ПК-5);

Основная литература

- 1. Рашка, С. Python и машинное обучение // Себастьян Рашка. ДМК, 2017. –418 с.
- 2. Вьюгин, В.В. Математические основы машинного обучения и прогнозирования // В.В. Вьюгин. МЦМНО, 2014. 305 с.
- 3. Бринк, Х., Ричардс, Дж., Феверолф, М. Машинное обучение // Хенрик Бринк, Джозеф Ричардс, Марк Феверолф. Питер, 2017. 336 с.
- 4. Флах П. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных / пер. с англ. А. А. Слинкина. М.: ДМК Пресс, 2015. 400 с.: ил.
- 5. Бурков, А. Машиное обучение без лишних слов // Андрей Бурков. СПб.: Питер, 2020. 192 сКоэльо Л.П., Ричарт В. Построение систем машинного обучения на языке Python. 2016. 302 с.
- 6. Мерков А. Б. Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
- 7. Мерков А. Б. Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
- 8. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. 739 p.
- Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2016.
 738 p.

Дополнительная литература:

- 1. Шарден, Б., Массаро, Л., Боскетти, А. Крупномасштабное машинное
- 2. обучение вместе с Python // Б. Шарден, Л. Массарон, А. Боскетти. ДМК Пресс, 2017. 358 с.
- 3. Жерон Ольен Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow: концепции, инструменты и техники для создания интеллектуальных систем. Пер. с англ. СпБ.: ООО "Альфа-книга': 2018. 688 c.man, L. Arcing classifiers (with discussion), Annals of Statistics 26: 2008. 801–849.

Интернет ресурсы:

- 1. https://ya-r.ru/2020/05/07/vorontsov-kurs-mashinnoe-obuchenie-2019-shkola-analiza-dannyh/
- 2. https://www.youtube.com/watch?v=QIktmPA8nb0&list=PLJOzdkh8T5krxc4HsHbB8g8f0hu7973fK&index=3
- 3. <a href="http://www.machinelearning.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B88%D0%B8%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%BB%D0%B5_(%D0%BA%D1%83%D1%80%D1%81_%D0%BB%D0%B5%D0%BA%D1%86%D0%B8%D0%B9, %D0%9A.%D0%92.%D0%92%D0%BE%D0_1%80%D0%BE%D0%BD%D1%86%D0%BE%D0%BE%D0%B2)

МЕТОДЫ ОБУЧЕНИЯ ДИСЦИПЛИНЫ

На кафедре при преподавании дисциплины применяются следующие методы обучения:

- устное изложение учебного материала на лекциях;
- самостоятельное изучение студентами учебного материала по рекомендованной литературе;
 - выполнение контрольных работ PhD студентами.

Выбор методов проведения занятий обусловлен учебными целями, содержанием учебного материала, временем, отводимым на занятия.

На занятиях в тесном сочетании применяется несколько методов, один из которых выступает ведущим. Он определяет построение и вид занятий.

На лекциях излагаются лишь основные, имеющие принципиальное значение и наиболее трудные для понимания и усвоения теоретические и расчетно-конструкторские вопросы.

Теоретические знания, полученные PhD студентами на лекциях и при самостоятельном изучении курса по литературным источникам, закрепляются при выполнении индивидуальных контрольных работ.

При выполнении индивидуальных контрольных работ обращается особое внимание на выработку у PhD студентов умения пользоваться нормативной и справочной литературой, грамотно выполнять и оформлять инженерные расчеты и чертежи и умения отрабатывать отчетные документы в срок и с высоким качеством.

СРЕДСТВА ОБУЧЕНИЯ

К средствам обучения по данной дисциплине относятся:

- речь преподавателя;
- технические средства обучения: проектор (доска), персональные компьютеры;
- учебники, учебные пособия, справочники, изданные лекции, методические указания;

На занятиях по дисциплине должны широко использоваться разнообразные средства обучения, способствующие более полному и правильному пониманию темы лекции или лабораторного занятия.